Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T07:35:35.306Z Has data issue: false hasContentIssue false

Emission modelling of hydrodynamic AGN jet simulations

Published online by Cambridge University Press:  07 April 2020

Izak P. van der Westhuizen
Affiliation:
Department of Physics, University of the Free State, PO Box 339, Bloemfontein9300, South Africa, email: vanderwesthuizenip@ufs.ac.za
Brian van Soelen
Affiliation:
Department of Physics, University of the Free State, PO Box 339, Bloemfontein9300, South Africa, email: vanderwesthuizenip@ufs.ac.za
Petrus J. Meintjes
Affiliation:
Department of Physics, University of the Free State, PO Box 339, Bloemfontein9300, South Africa, email: vanderwesthuizenip@ufs.ac.za
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio-loud Active Galactic Nuclei (AGN) produce relativistic jets that can be modelled with relativistic hydrodynamic (RHD) simulations. In this study we present two such simulations of jets, used to investigate the parameters required to reproduce structures consistent with both FR I and FRII jets. In the first simulation a Lorentz factor of 10 and supersonic flow of Mach 30 were chosen, while for the second simulation a Lorentz factor of 1.0014 with a supersonic flow of Mach 4 was used. Over similar distances scales the first case shows a well collimated beam with a strong shock at the interface between the jet and ambient medium while the second case shows a less stable beam and a larger cocoon. To determine whether the simulated physical structures are consistent with the observed FR I/II jets, the synchrotron emission has been calculated to produce radio maps at a single frequency of 1.5 GHz.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aloy, M. A., Martí, J. M., Gómez, J. L., Agudo, I., Müller, E., & Ibáñez, J. M., 2003, ApJl, 585, 109CrossRefGoogle Scholar
Böttcher, M., Harris, D. E. & Krawczynski, H., 2012, Relativistic Jets from Active Galactic Nuclei, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, Chapter 3, pp 3980CrossRefGoogle Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31CrossRefGoogle Scholar
Gomez, J. L., Marti, J. M., Marscher, A. P., Ibáñez, J. M. & Marcaide, J. M., 1995, ApJ, 449, 1921CrossRefGoogle Scholar
Martí, J. M., Müller, E., Font, J. A., Ibáñez, J. M. & Marquina 1997, ApJ, 479, 151CrossRefGoogle Scholar
Massaglia, S., Bodo, G., Rossi, P., Capetti, S., & Mignone, A., 2016, A&A, 596, 10Google Scholar
Mignone, A, Bodo, G, Massaglia, S, Matsakos, T, Tesileanu, O, Zanni, C & Ferrari, A 2007, ApJ, 170, 228–42Google Scholar
Rossi, P, Mignone, A, Bodo, G, Massaglia, S & Ferrari, A, 2008 A&A 488, 795806Google Scholar
Scheck, L., Aloy, M. A., Martí, J. M., Gómez, J. L., & Müller, E. 2002, MNRAS, 331, 615CrossRefGoogle Scholar
Torresi, E., 2018, Proc. IAU Symposium No. 342, (S342)Google Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803CrossRefGoogle Scholar