Hostname: page-component-65f69f4695-7j7ct Total loading time: 0 Render date: 2025-06-30T20:43:20.926Z Has data issue: false hasContentIssue false

Estimating the distribution of Galaxy Morphologies on a continuous space

Published online by Cambridge University Press:  01 July 2015

Giuseppe Vinci
Affiliation:
Dept. of Statistics, Baker Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA email: gvinci@andrew.cmu.edu
Peter Freeman
Affiliation:
Dept. of Statistics, Baker Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA email: gvinci@andrew.cmu.edu
Jeffrey Newman
Affiliation:
Dept. of Physics & Astronomy, University of Pittsburgh, 310 Allen Hall 3941 O'Hara St., Pittsburgh, PA 15260, USA
Larry Wasserman
Affiliation:
Dept. of Statistics, Baker Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA email: gvinci@andrew.cmu.edu
Christopher Genovese
Affiliation:
Dept. of Statistics, Baker Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA email: gvinci@andrew.cmu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The incredible variety of galaxy shapes cannot be summarized by human defined discrete classes of shapes without causing a possibly large loss of information. Dictionary learning and sparse coding allow us to reduce the high dimensional space of shapes into a manageable low dimensional continuous vector space. Statistical inference can be done in the reduced space via probability distribution estimation and manifold estimation.

References

Arodź, T. 2012, Computing and Informatics, 24 no. 2 (2012): 183199.Google Scholar
Chen, Y.-C., Genovese, C. R., & Wasserman, L. 2013, arXiv preprint arXiv:1312.2098 (2013).Google Scholar
Elad, M. & Aharon, M. 2006, Image Processing, IEEE Transactions on 15, no. 12 (2006): 37363745.Google Scholar
Freeman, P. E., Izbicki, R., Lee, A. B., Newman, J. A.et al. 2013, MNRAS (2013): stt1016.Google Scholar
Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., & Sriperumbudur, B. K. 2012, Advances in neural information processing systems, pp. 1205–1213. 2012.Google Scholar
Jafari-Khouzani, K. & Soltanian-Zadeh, H. 2005, Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, no. 6 (2005): 10041008.CrossRefGoogle Scholar
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. 2010, The Journal of Machine Learning Research 11 (2010): 1960.Google Scholar
Windhorst, R. A., Cohen, S. H., Hathi, N. P., McCarthy, P. J.et al. 2011, ApJS 193, no. 2 (2011): 27.Google Scholar