Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T02:29:14.700Z Has data issue: false hasContentIssue false

Feii strength in NLS1s – dependence on the viewing angle and FWHM(Hβ)

Published online by Cambridge University Press:  29 January 2021

Swayamtrupta Panda
Affiliation:
Center For Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland email: panda@cft.edu.pl Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
Paola Marziani
Affiliation:
INAF-Astronomical Observatory of Padova, Vicolo dell’Osservatorio, 5, 35122PadovaPD, Italy
Bożena Czerny
Affiliation:
Center For Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland email: panda@cft.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We address the effect of orientation of the accretion disk plane and the geometry of the broad line region (BLR) in the context of understanding the distribution of quasars along their Main Sequence. We utilize the photoionization code CLOUDY to model the BLR, incorporating the ‘un-constant’ virial factor. We show the preliminary results of the analysis to highlight the co-dependence of the Eigenvector 1 parameter, RFeII on the broad HβFWHM (i.e. the line dispersion) and the inclination angle (θ), assuming fixed values for the Eddington ratio (Lbol/ LEdd), black hole mass (MBH), spectral energy distribution (SED) shape, cloud density (nH) and composition.†

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

The project was partially supported by NCN grant no. 2017/26/A/ST9/00756 (MAESTRO 9) and MNiSW grant DIR/WK/2018/12. PM acknowledges the INAF PRIN-SKA 2017 program 1.05.01.88.04.

References

Boroson, T.A. & Green, R.F., 1992, ApJS, 80, 109 10.1086/191661CrossRefGoogle Scholar
Chen, Z.-F., Yi, S.-X., Pang, T.-T., et al., 2019, ApJS, 244, 36 10.3847/1538-4365/ab41feCrossRefGoogle Scholar
Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M., 2006, A&A, 456, 75 Google Scholar
Ferland, G. J., Chatzikos, M., Guzmán, F., et al., 2017, RMxAA, 53, 385 Google Scholar
Grevesse, N., Asplund, M., Sauval, A. J., & Scott, P., 2010, ApSS, 328, 179 Google Scholar
Korista, K., Baldwin, J., Ferland, G., & Verner, D., 1997, ApJS, 108, 401 10.1086/312966CrossRefGoogle Scholar
Marziani, P., Sulentic, J. W., Negrete, C. A., et al., 2014, AstRv, 9, 6 Google Scholar
Panda, S., Czerny, B., Adhikari, et al., 2018, ApJ, 866, 115 10.3847/1538-4357/aae209CrossRefGoogle Scholar
Panda, S., Marziani, P., & Czerny, B., 2019a, ApJ, 882, 2 10.3847/1538-4357/ab3292CrossRefGoogle Scholar
Panda, S., Marziani, P., & Czerny, B., 2019b, Proceedings of the International Astronomical Union (IAU), 356, 2 Google Scholar
Panda, S., Marziani, P., & Czerny, B., 2020, Contributions of the Astronomical Observatory Skalnaté Pleso, 50, 293 10.31577/caosp.2020.50.1.293CrossRefGoogle Scholar
Peterson, B. M., 1993, PASP, 105, 247 10.1086/133140CrossRefGoogle Scholar
Shen, Y., & Ho, L.C., 2014, Nature, 513, 210 10.1038/nature13712CrossRefGoogle Scholar
Sulentic, J. W., Zwitter, T., Marziani, P. & Dultzin-Hacyan, D., 2000, ApJL, 536, L5 10.1086/312717CrossRefGoogle Scholar