Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:38:46.483Z Has data issue: false hasContentIssue false

Gemini/IFU Observations of Galactic Outflows in Starburst Galaxies

Published online by Cambridge University Press:  01 December 2007

Linda J. Smith
Affiliation:
Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218, USA Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, UK
Mark S. Westmoquette
Affiliation:
Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present Gemini/IFU observations that sample the roots of the galactic wind outflows in the starburst galaxies NGC 1569 and M82. The good spatial and spectral resolutions of these observations allow us to probe the interactions of cluster winds with their environments on small scales. For both galaxies, we find a ubiquitous broad (200–300 km s−1) Hα component underlying a brighter narrower component. By mapping the properties of the individual line components, we find correlations that suggest that the broad component results from powerful cluster wind-gas clump interactions. For NGC 1569, there is little evidence for organised gas flows within the central zone and we suggest that the flow-dominated wind must form well beyond the region containing the massive star clusters. For M82, we find that the kinematics of the wind base are very complex; the width of the broad component reaches values of > 350 km s−1 at the base of the wind, and the outflow itself rapidly becomes chaotic in the inner wind region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allington-Smith, J., Murray, G., Content, R., et al. 2002, PASP, 114, 892Google Scholar
Begelman, M. C. & Fabian, A. C. 1990, MNRAS, 244, 26PGoogle Scholar
Chu, Y.-H. & Kennicutt, R. C. 1994, ApJ, 425, 720Google Scholar
Dimeo, R. 2005, PAN User Guide, ftp://ftp.ncnr.nist.gov/pub/staff/dimeo/pandoc.pdf/Google Scholar
Greggio, L., Tosi, M., Clampin, M., et al. 1998, ApJ, 504, 725CrossRefGoogle Scholar
Greve, A., Tarchi, A., Hüttemeister, S., et al. 2002, A&A, 381, 825Google Scholar
Heckman, T. M., Dahlem, M., Lehnert, M. D., et al. 1995, ApJ, 448, 98Google Scholar
Hunter, D. A., O'Connell, R. W., Gallagher, J. S., & Smecker-Hane, T. A. 2000, AJ, 120, 2383Google Scholar
Martin, C. L. 1998, ApJ, 506, 222Google Scholar
Martin, C. L., Kobulnicky, H. A., & Heckman, T. M., 2002, ApJ, 574, 663Google Scholar
Mühle, S., Klein, U., Wilcots, E. M., & Hüttemeister, S., 2005, AJ, 130, 524CrossRefGoogle Scholar
Pittard, J. M. 2007, in Hartquist, T. W., Pittard, J. M., Falle, S. A. E. G., (eds.), Diffuse Matter from Star Forming Regions to Active Galaxies. (Dordrecht: Springer), Astrophysics & Space Science 245Google Scholar
Scalo, J. M., 1987, in Hollenbach, D. J., Thronson, H. A. Jr, (eds.), Interstellar Processes, (Dordrecht: Reidel), Astrophys Space Sci Libray 134, 349Google Scholar
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83Google Scholar
Westmoquette, M. S., Exter, K. M., Smith, L. J., & Gallagher, J. S. III, 2007a MNRAS, 381, 894CrossRefGoogle Scholar
Westmoquette, M. S., Smith, L. J., Gallagher, J. S. III, & Exter, K. M. 2007b MNRAS, 381, 913CrossRefGoogle Scholar
Westmoquette, M. S., Smith, L. J., Gallagher, J. S. III, et al. 2007c ApJ, 671, 358Google Scholar
Yang, H., Chu, Y.-H., Skillman, E. D., & Terlevich, R. 1996, AJ, 112, 146Google Scholar