Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T03:18:04.055Z Has data issue: false hasContentIssue false

Globular clusters in the era of precision astrometry

Published online by Cambridge University Press:  11 March 2020

Paolo Bianchini*
Affiliation:
Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France email: paolo.bianchini@astro.unistra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

he study of the kinematics of globular clusters (GCs) offers the possibility of unveiling their long term evolution and uncovering their yet unknown formation mechanism. Gaia DR2 has strongly revitalized this field and enabled the exploration of the 6D phase-space properties of Milky Way GCs, thanks to precision astrometry. However, to fully leverage on the power of precision astrometry, a thorough investigations of the data is required. In this contribution, we show that the study of the mean radial proper motion profiles of GCs offers an ideal benchmark to assess the presence of systematics in crowded fields. Our work demonstrates that systematics in Gaia DR2 for the closest 14 GCs are below the random measurement errors, reaching a precision of ∼0.015 mas yr−1 for mean proper motion measurements. Finally, through the analysis of the tangential component of proper motions, we report the detection of internal rotation in a sample of ∼50 GCs, and outline the implications of the presence of angular momentum for the formation mechanism of proto-GC. This result gives the first taste of the unparalleled power of Gaia DR2 for GCs science, in preparation for the subsequent data releases.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baumgardt, H. & Hilker, M. 2018, MNRAS, 478, 1520CrossRefGoogle Scholar
Bellini, A., Bianchini, P., Varri, A. L., Anderson, J., Piotto, G., van der Marel, R. P., Vesperini, E., & Watkins, L. L. 2017, ApJ 844, 167CrossRefGoogle Scholar
Bianchini, P., Varri, A. L., Bertin, G., & Zocchi, A. 2013, ApJ 772, 67CrossRefGoogle Scholar
Bianchini, P., van der Marel, R. P., del Pino, A., Watkins, L. L., Bellini, A., Fardal, M. A., Libralato, M., & Sills, A. 2018, MNRAS, 481, 2125CrossRefGoogle Scholar
Bianchini, P.et al. 2019, in preparationGoogle Scholar
Collaboration, Gaiaet al. 2018, A&A, 616, A1Google Scholar
Collaboration, Gaiaet al. 2018, A&A, 616, A12Google Scholar
Harris, W. E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Kamann, S.et al. 2018, MNRAS 473, 5591CrossRefGoogle Scholar
Libralato, M.et al. 2018, ApJ 861, 99CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., & Renzini, A. 2018, MNRAS, 481, 5098CrossRefGoogle Scholar
Sollima, A., Baumgardt, H., & Hilker, M. 2019, MNRAS, 485, 1460CrossRefGoogle Scholar
Tiongco, M. A., Vesperini, E., & Varri, A. L. 2017, MNRAS, 469, 683Google Scholar
Tsatsi, A., Mastrobuono-Battisti, A.et al. 2017, MNRAS, 464, 3720CrossRefGoogle Scholar
van de Ven, G., van den Bosch, R. C. E., Verolme, E. K., & de Zeeuw, P. T. 2006, A&A, 445, 513Google Scholar
Vasiliev, E. 2019, MNRAS, 489, 623CrossRefGoogle Scholar
Watkins, L. L., van der Marel, R. P., Bellini, A., & Anderson, J. 2015, ApJ, 803, 29CrossRefGoogle Scholar
Zocchi, A., Bertin, G., & Varri, A. L. 2012, A&A, 539, A65Google Scholar