Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T19:58:28.711Z Has data issue: false hasContentIssue false

High-velocity runaway stars from three-body encounters

Published online by Cambridge University Press:  18 January 2010

V. V. Gvaramadze
Affiliation:
Sternberg Astronomical Institute, Moscow State University, Universitetskij Pr. 13, Moscow 119992, Russia email: vgvaram@mx.iki.rssi.ru
A. Gualandris
Affiliation:
Center for Computational Relativity and Gravitation, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester NY 14623, USA email: alessiag@astro.rit.edu
S. Portegies Zwart
Affiliation:
Astronomical Institute ‘Anton Pannekoek’ and Section Computational Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, the Netherlands email: spz@science.uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 − 400 km s−1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M) and found that about 3 − 4% of all encounters produce velocities ≥ 400 km s−1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 − 400 km s−1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 − 100 M stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 − 400 km s−1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s−1) late B-type escapers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baumgardt, H., Gualandris, A., & PortegiesZwart, S. Zwart, S. 2006, MNRAS, 372, 174CrossRefGoogle Scholar
Belkus, H., Van Bever, J., & Vanbeveren, D. 2007, ApJ, 659, 1576CrossRefGoogle Scholar
Blaauw, A. 1961, Bull. Astron. Inst. Neth., 15, 265Google Scholar
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, ApJ (Letters), 622, L33CrossRefGoogle Scholar
Chatterjee, S., Vlemmings, W. H. T., Brisken, W. F., Lazio, T. J. W., Cordes, J. M., Goss, W. M., Thorsett, S. E., Fomalont, E. B., Lyne, A. G., & Kramer, M. 2005, ApJ (Letters), 630, L61CrossRefGoogle Scholar
Gualandris, A. & Portegies Zwart, S. 2007, MNRAS (Letters), 376, L29CrossRefGoogle Scholar
Gualandris, A., Portegies Zwart, S., & Sipior, M. S. 2005, MNRAS, 363, 223CrossRefGoogle Scholar
Gvaramadze, V. V. 2007, A&A (Letters), 470, L9Google Scholar
Gvaramadze, V. V. 2009, MNRAS (Letters), 395, L85CrossRefGoogle Scholar
Gvaramadze, V. V., Gualandris, A., & Portegies Zwart, S. 2008, MNRAS, 385, 929CrossRefGoogle Scholar
Gvaramadze, V. V., Gualandris, A., & Portegies Zwart, S. 2009, MNRAS, 396, 570CrossRefGoogle Scholar
Heber, U., Edelmann, H., Napiwotzki, R., Altmann, M., & Scholz, R.-D. 2008, A&A (Letters), 483, L21Google Scholar
Hills, J. G. 1988, Nature, 331, 687CrossRefGoogle Scholar
Leonard, P. J. T. 1991, AJ, 101, 562CrossRefGoogle Scholar
McMillan, S. L. W. & Hut, P. 1996, ApJ, 467, 348CrossRefGoogle Scholar
Portegies Zwart, S. F. 2000, ApJ, 544, 437CrossRefGoogle Scholar
Portegies Zwart, S. F. & McMillan, S. L. W. 2002, ApJ, 576, 899CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., & Makino, J. 2001, MNRAS, 321, 199CrossRefGoogle Scholar
Poveda, A., Ruiz, J., & Allen, C. 1967, Bol. Obs. Tonantzintla Tacubaya, 4, 86Google Scholar
Weidner, C., Kroupa, P., & Bonnell, I. 2009, MNRAS, in press (arXiv:0909.1555)Google Scholar
Yu, Q. & Tremaine, S. 2003, ApJ, 599, 1129CrossRefGoogle Scholar
Yungelson, L. R., van den Heuvel, E. P. J., Vink, J. S., Portegies Zwart, S. F., & de Koter, A. 2008, A&A, 477, 223Google Scholar