Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T16:50:46.183Z Has data issue: false hasContentIssue false

How Common Envelope Interactions Change the Lives of Stars and Planets

Published online by Cambridge University Press:  23 April 2012

O. De Marco
Affiliation:
Macquarie University Research Centre in Astronomy, Astrophysics & Astrophotonics Dept. of Physics and Astronomy, Macquarie University, Sydney, Australia email: orsola.demarco@mq.edu.au
J.-C. Passy
Affiliation:
Dept. of Physics and Astronomy, University of Victoria, Victoria, BC, Canada Astrophysics Department, American Museum of Natural History, New York, NY, USA
F. Herwig
Affiliation:
Dept. of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
C. L. Fryer
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, USA
M.-M. Mac Low
Affiliation:
Astrophysics Department, American Museum of Natural History, New York, NY, USA
J. S. Oishi
Affiliation:
Kavli Institute, Stanford University, Palo Alto, CA, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The common envelope interaction between a giant star and a stellar or substellar companion is at the origin of several compact binary classes, including the progenitors of Type Ia SN. A common envelope is also what will happen when the Sun expands and swallows its planets as far out as Jupiter. The basic idea and physics of the common envelope interaction has been known since the 1970s. However, the outcome of a common envelope interaction - what systems survive and what their parameters are - depends sensitively on the details of the engagement. To advance our knowledge of the common envelope interaction between stars and their stellar and substellar companions, we have carried out a series of simulations with Eulerian, grid-based and Lagrangian, smoothed particle hydrodynamics codes between a 0.88-M, 85-R, red giant branch star and companions in the mass range 0.1-0.9 M. In this contribution, we will discuss the reliability of the techniques, the physics that is not included in the codes but is likely important, the state of the ejected common envelope, and the final binary separation. We also carry out a comparison with the observations. Finally, we discuss the common envelope efficiency parameter, α and the survival of planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bear, E. & Soker, N. 2010, New Astronomy, 15, 483CrossRefGoogle Scholar
Bowler, B. P., et al. , 2010, ApJ, 709, 396CrossRefGoogle Scholar
Davis, P. J., Kolb, U., & Knigge, C. 2012, MNRAS, 419, 287CrossRefGoogle Scholar
De Marco, O. 2009, PASP, 121, 316CrossRefGoogle Scholar
De Marco, O., Sandquist, E. L., Mac Low, M.-M., Herwig, F., & Taam, R. E. 2003, in The VIII Texas-Mexico Conference on Astrophysics, eds. Reyes-Ruiz, M. & Vázquez-Semadeni, E., Revista Mexicana de Astronomia y Astrofisica Conf. Ser., Vol. 18, pp. 24Google Scholar
De Marco, O., Passy, J.-C., Moe, M., Herwig, F., Mac Low, M.-M., & Paxton, B. 2011, MNRAS, 28Google Scholar
Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485Google Scholar
Fischer, D. A. & Valenti, J. 2005, ApJ, 622, 1102CrossRefGoogle Scholar
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152CrossRefGoogle Scholar
Fryer, C. L., Rockefeller, G., & Warren, M. S. 2006, ApJ, 643, 292CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., & Eggleton, P. P. 1995, MNRAS, 272, 800Google Scholar
Herwig, F. 2000, A&A, 360, 952Google Scholar
Lineweaver, C. H. & Grether, D. 2003, ApJ, 598, 1350CrossRefGoogle Scholar
O'Shea, B. W., Bryan, G., Bordner, J., Norman, M. L., Abel, T., Harkness, R., & Kritsuk, A. 2004, astro-ph/0403044Google Scholar
Paczynski, B. 1976, in IAU Symposium 73, Structure and Evolution of Close Binary Systems, eds. Eggleton, P., Mitton, S., & Whelan, J., p. 75CrossRefGoogle Scholar
Passy, J.-C., De Marco, O., Fryer, C. L., Herwig, F., Diehl, S., Oishi, J., Mac Low, M.-M., Bryan, G. L., & Rockefeller, G. 2012, ApJ, 744, 52CrossRefGoogle Scholar
Politano, M. & Weiler, K. P., 2007, ApJ, 665, 663CrossRefGoogle Scholar
Qian, S., et al. , 2009, ApJL, 695, L163CrossRefGoogle Scholar
Ricker, P. M. & Taam, R. E., 2008, ApJL, 672, L41CrossRefGoogle Scholar
Ricker, P. M. & Taam, R. E., 2012, ApJ, 746, 74CrossRefGoogle Scholar
Ruiter, A. J., Belczynski, K., Sim, S. A., Hillebrandt, W., Fryer, C. L., Fink, M., & Kromer, M. 2011, MNRAS, 417, 408CrossRefGoogle Scholar
Sandquist, E. L., Taam, R. E., Chen, X., Bodenheimer, P., & Burkert, A. 1998, ApJ, 500, 909CrossRefGoogle Scholar
Setiawan, J., Rainer, K., Henning, T., Rix, H.-W., Boyke, R., Rodmann, J., & Schultze-Hartung, T. 2010, Science, 330, 1642CrossRefGoogle Scholar
Soker, N. 1998, ApJ, 496, 833CrossRefGoogle Scholar
Verbunt, F. 1993, ApJ, 31, 93Google Scholar
Warner, B. 1995, Cataclysmic Variable StarsCrossRefGoogle Scholar
Woods, T. E. & Ivanova, N. 2011, ApJ, 739, L48CrossRefGoogle Scholar