Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T03:42:01.198Z Has data issue: false hasContentIssue false

How well can the evolution of the scale factor be reconstructed by the current data?

Published online by Cambridge University Press:  01 July 2015

Sandro D. P. Vitenti
Affiliation:
GReCO, Institut d'Astrophysique de Paris, UMR7095 CNRS, 98 bis boulevard Arago, 75014 Paris, France email: dias@iap.fr
Mariana Penna-Lima
Affiliation:
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, 12227-010, São José dos Campos, Brazil email: mariana.lima@inpe.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Distance measurements are currently the most powerful tool to study the expansion history of the universe without assuming its matter content nor any theory of gravitation. In general, the reconstruction of the scale factor derivatives, such as the deceleration parameter q(z), is computed using two different methods: fixing the functional form of q(z), which yields potentially biased estimates, or approximating q(z) by a piecewise nth-order polynomial function, whose variance is large. In this work, we address these two methods by reconstructing q(z) assuming only an isotropic and homogeneous universe. For this, we approximate q(z) by a piecewise cubic spline function and, then, we add to the likelihood function a penalty factor, with scatter given by σrel. This factor allows us to vary continuously between the full n knots spline, σrel → ∞, and a single linear function, σrel → 0. We estimate the coefficients of q(z) using the Monte Carlo approach, where the realizations are generated considering ΛCDM as a fiducial model. We apply this procedure in two different cases and assuming four values of σrel to find the best balance between variance and bias. First, we use only the Supernova Legacy Survey 3-year (SNLS3) sample and, in the second analysis, we combine the type Ia supernova (SNeIa) likelihood with those of baryonic acoustic oscillations (BAO) and Hubble function measurements. In both cases we fit simultaneously q(z) and 4 nuisance parameters of the supernovae, namely, the magnitudes $\mathcal{M}$1 and $\mathcal{M}$2 and the light curve parameters α and β.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Conley, A., Guy, J., Sullivan, M., Regnault, N., & Astier, P., et al. 2011, ApJS, 192, 1CrossRefGoogle Scholar
Daly, R. A., Djorgovski, S. G., Freeman, K. A., Mory, M. P., & O'Dea, C., et al. 2008, ApJ, 677, 1Google Scholar
Hinshaw, G., Larson, D., Komatsu, E., & Spergel, D. N.et al. 2013, ApJS, 208, 19CrossRefGoogle Scholar
Lazkoz, R., Salzano, V., & Sendra, I. 2012, Eur. Phys. J. C, 72, 2130CrossRefGoogle Scholar
Lu, J., Xu, L., & Liu, M. 2011, Phys. Lett. B, 699, 246Google Scholar
Rapetti, D., Allen, S. W., Amin, M. A., Blandford, R. D. 2007, MNRAS, 375, 1510Google Scholar
Riess, A. G., Strolger, L-G., Tonry, J., Casertano, S., Ferguson, H. C., et al. 2004, ApJ, 607, 665Google Scholar
Riess, A. G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H. C., et al. 2011, ApJ, 730, 119CrossRefGoogle Scholar
Shafieloo, A. 2012, JCAP, 8, 2CrossRefGoogle Scholar
Sullivan, M., Guy, J., Conley, A., Regnault, N., Astier, P., et al. 2011, ApJ, 737, 102CrossRefGoogle Scholar
Turner, M. S. & Riess, A. 2002, ApJ, 569, 18CrossRefGoogle Scholar
Visser, M. 2004, Classical Quant. Grav., 21, 2603Google Scholar
Zheng, W., Li, H., Xia, J. Q.et al. 2014, Int. J. Mod. Phys. D, 23, 50051Google Scholar