Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-12T21:47:00.218Z Has data issue: false hasContentIssue false

Inclinations of Circumbinary Planets: Assembly of Protoplanetary Discs and Secular Binary-Disc Interaction

Published online by Cambridge University Press:  29 April 2014

Dong Lai
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853, USA email: dong@astro.cornell.edu
Francois Foucart
Affiliation:
CITA, University of Toronto, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Kepler satellite has discovered a number of transiting planets around close binary stars. These circumbinary systems have highly aligned planetary and binary orbits. In this paper, we explore how the mutual inclination between the planetary and binary orbits may reflect the physical conditions of the assembly of protoplanetary discs and the interaction between protostellar binaries and circumbinary discs. Given the turbulent nature of star-forming molecular clouds, it is possible that the infalling gas onto the outer region of a circumbinary disc rotates around a different axis compared to the central protostellar binary. Thus, the newly assembled circumbinary disc can be misaligned with respect to the binary. However, the gravitational torque from the binary produces warp and twist in the disc, and the back-reaction torque tends to align the disc and the binary orbital plane. We present a new, analytic calculation of this alignment torque, and show that the binary-disc inclination angle can be reduced appreciably after the binary accretes a few percent of its mass from the disc. Since mass accretion onto the proto-binary is very likely to occur, our calculation suggests that in the absence of other disturbances, circumbinary discs and planets around close (sub-AU) stellar binaries are highly aligned with the binary orbits, while discs and planets around wide binaries can be misaligned.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Adams, F. C., Ruden, S. P., & Shu, F. H., 1989, ApJ, 347, 959CrossRefGoogle Scholar
Artymowicz, P. & Lubow, S. H. 1994, ApJ, 421, 651Google Scholar
Artymowicz, P. & Lubow, S. H. 1996, ApJ, 467, L77Google Scholar
Albrecht, S., Reffert, S., Snellen, I. A. G., & Winn, J. N. 2009, Nature, 461, 373Google Scholar
Albrecht, S., Winn, J. N., Carter, J. A., Snellen, I. A. G., & de Mooij, E. J. W. 2011, ApJ, 726, 68Google Scholar
Bai, X.-N. & Stone, J. M. 2011, ApJ, 736, 144Google Scholar
Bate, M. R., et al. 2000, MNRAS, 317, 773CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577CrossRefGoogle Scholar
Capelo, H. L., et al. 2012, ApJ 757 article id. L18CrossRefGoogle Scholar
Chiang, E. I. & Murray-Clay, R. A. 2004, ApJ, 607, 913CrossRefGoogle Scholar
Davis, C. J., Mundt, R., & Eislöffel, J. 1994, ApJ, 437, L58Google Scholar
Doyle, L. R., et al. 2011, Science, 333, 1602CrossRefGoogle Scholar
Foucart, F. & Lai, D. 2011, MNRAS, 412, 2799CrossRefGoogle Scholar
Foucart, F. & Lai, D. 2013, Apj 764 article id. 106Google Scholar
Gies, D. R., et al. 2012, ApJ, 143, 137Google Scholar
Goodwin, S. P., et al. 2007, Protostars and Planets V (Univ. Arizona Press), pp 133–147Google Scholar
Hioki, J.et al. 2011, PASJ, 63, 543Google Scholar
Klessen, R. S. 2011, EAS Publication Series, 51, 133Google Scholar
Konopacky, Q. M., et al. 2012, ApJ, 750, 79Google Scholar
Kratter, K. M., Matzner, C. D., & Krumholz, M. R. 2008, ApJ, 681, 375CrossRefGoogle Scholar
Lai, D. 1999, ApJ, 524, 1030Google Scholar
Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 412, 2790CrossRefGoogle Scholar
Lubow, S. H. & Ogilvie, G. I., 2000, ApJ, 538, 326Google Scholar
MacFadyen, A. I. & Milosavljevic, M. 2008, ApJ, 672, 83Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Offner, S. S. R., Kratter, K. M., Matzner, C. D., Krumholz, M. R., & Klein, R. I., 2010, ApJ, 725, 1485CrossRefGoogle Scholar
Orosz, J. A., et al. 2012a, ApJ, 758, 87Google Scholar
Orosz, J. A., et al. 2012b, Science, 337, 1511Google Scholar
Papaloizou, J. C. B. & Terquem, C. 1995, MNRAS, 274, 987Google Scholar
Pfeiffer, H. & Lai, D. 2004, ApJ, 604, 766CrossRefGoogle Scholar
Roccatagliata, V., et al. 2011, A&A, 534, A33Google Scholar
Schwamb, M. E., et al. 2012, arXiv: 1210.3612Google Scholar
Shirakawa, A. & Lai, D. 2002, ApJ, 565, 1134CrossRefGoogle Scholar
Stapelfeldt, K. R., et al. 1998, ApJ, 502, L65Google Scholar
Triaud, A. H. M. J., et al. 2013, A&A, 549, A18Google Scholar
Welsh, W. F., Orosz, J. A., Carter, J. A., Fabrycky, D. C., Ford, E. B., et al. 2012 Nature, 481, 475CrossRefGoogle Scholar
Winn, J. N., Holman, M. J., Johnson, J. A., Stanek, K. Z., & Garnavich, P. M. 2004, ApJ, 603, L45CrossRefGoogle Scholar
Winn, J. N., et al. 2011, ApJ 741 L1.CrossRefGoogle Scholar