Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T17:51:12.606Z Has data issue: false hasContentIssue false

Initiation and chromospheric effects of a M1.0 class solar flare from high-resolution multi-wavelength observations

Published online by Cambridge University Press:  12 September 2017

V. M. Sadykov
Affiliation:
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA email: vsadykov@njit.edu
A. G. Kosovichev
Affiliation:
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA email: vsadykov@njit.edu NASA Ames Research Center, Moffett Field, CA 94035, USA W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
I. N. Sharykin
Affiliation:
Space Research Institute (IKI) of Russian Academy of Sciences, Moscow 117997, Russia
I. V. Zimovets
Affiliation:
Space Research Institute (IKI) of Russian Academy of Sciences, Moscow 117997, Russia
S. Vargas Dominguez
Affiliation:
Universidad Nacional de Colombia, Sede Bogotá, Observatorio Astronómico, Carrera 45 # 26-85, Bogotá, Colombia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Initiation and development of a M 1.0 class flare of June 12, 2014, was observed by space and ground-based telescopes, including EUV and X-ray imaging spectroscopy by IRIS and RHESSI, and high-resolution optical imaging by 1.6 m New Solar Telescope (NST). Analyzing the NST data, we found small-scale loop-like structures in the region of the magnetic field Polarity Inversion Line (PIL), the emergence and interaction of which caused photospheric brightenings temporarily coinciding with hard X-ray impulses. Detailed studies of the PIL region reveal signatures of photospheric plasma downflows and dissipation of electric currents. The reconstructed magnetic field topology shows a bundle of lines connecting the PIL region with the flare ribbons which were places of chromospheric evaporation observed by IRIS. The observations suggest a scenario with the primary energy release processes located in the low atmospheric layers of the PIL, energizing the overlying large-scale magnetic structure and causing “gentle” chromospheric evaporation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Antiochos, S. K. & Sturrock, P. A., 1978, ApJ, 220, 1137 CrossRefGoogle Scholar
Bornmann, P. L., Speich, D., Hirman, J., et al., 1996, in Proc. SPIE, 2812, 291Google Scholar
De Pontieu, B., Title, A. M., Lemen, J. R. et al., 2014, SoPh, 289, 2733 Google Scholar
Démoulin, P., Henoux, J. C., Priest, E. R., & Mandrini, C. H., 1996, A&A, 308, 643 Google Scholar
Fisher, G. H., Canfield, R. C., & McClymont, A. N., 1985, ApJ, 289, 414 CrossRefGoogle Scholar
Goode, P. R. & Cao, W., 2012, ASPCS, 463, 357 Google Scholar
Kumar, P., Yurchyshyn, V., Wang, H., & Cho, K.-S., 2015, ApJ, 83, 809 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al., 2012, Sol. Phys., 275, 17 CrossRefGoogle Scholar
Lin, R. P., Dennis, B. R., Hurford, G. J. et al., 2002, Sol. Phys., 2010, 3 CrossRefGoogle Scholar
Rubio da Costa, F., Liu, W., Petrosian, V., & Carlsson, M., 2015, ApJ, 813, 133 CrossRefGoogle Scholar
Sadykov, V. M., Vargas Dominguez, S., Kosovichev, A. G. et al., 2015, ApJ, 805, 167 CrossRefGoogle Scholar
Sadykov, V. M., Kosovichev, A. G., Sharykin, I. N. et al., 2016, ApJ, 828, 4 CrossRefGoogle Scholar
Scherrer, P. H., Schou, J., & Bush, R. I., 2012, SoPh, 275, 207 Google Scholar
Severnyi, A. B., 1958, Soviet Ast., 2, 310 Google Scholar
Sharykin, I. N., Sadykov, V. M., Kosovichev, A. G. et al., 2017, ApJ, 840, 13 CrossRefGoogle Scholar
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G., 2000, ApJ, 540, 1150 CrossRefGoogle Scholar