No CrossRef data available.
Article contents
Magnetic geometry and activity of cool stars
Published online by Cambridge University Press: 13 January 2020
Abstract
Stellar magnetic field manifestations such as stellar winds and EUV radiation are the key drivers of planetary atmospheric loss and escape. To understand how the central star influences habitability, it is very important to perform detailed investigation of the star’s magnetic field. We investigate the surface magnetic field geometry and chromospheric activity of 51 sun-like stars. The magnetic geometry is reconstructed using Zeeman Doppler imaging. Chromospheric activity is measured using the Ca II H& K lines. We confirm that the Sun’s large-scale geometry is dominantly poloidal, which is also true for slowly rotating stars. Contrary to the Sun, rapidly rotating stars can have a strong toroidal field and a weak poloidal field. This separation in field geometry appears at Ro=1. Our results show that detailed investigation of stellar magnetic field is important to understand its influence on planetary habitability.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S345: Origins: From the Protosun to the First Steps of Life , August 2018 , pp. 341 - 342
- Copyright
- © International Astronomical Union 2020