Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:31:37.088Z Has data issue: false hasContentIssue false

Mentari: A pipeline to model the galaxy SED using semi analytic models

Published online by Cambridge University Press:  10 June 2020

Dian Triani
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology PO Box 218, Hawthorn VIC 3122, Australia email: dtriani@swin.edu.au ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
Darren Croton
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology PO Box 218, Hawthorn VIC 3122, Australia email: dtriani@swin.edu.au ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
Manodeep Sinha
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology PO Box 218, Hawthorn VIC 3122, Australia email: dtriani@swin.edu.au ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We build a theoretical picture of how the light from galaxies evolves across cosmic time. In particular, we predict the evolution of the galaxy spectral energy distribution (SED) by carefully integrating the star formation and metal enrichment histories of semi-analytic model (SAM) galaxies and combining these with stellar population synthesis models which we call mentari. Our SAM combines prescriptions to model the interplay between gas accretion, star formation, feedback process, and chemical enrichment in galaxy evolution. From this, the SED of any simulated galaxy at any point in its history can be constructed and compared with telescope data to reverse engineer the various physical processes that may have led to a particular set of observations. The synthetic SEDs of millions of simulated galaxies from mentari can cover wavelengths from the far UV to infrared, and thus can tell a near complete story of the history of galaxy evolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alongi, M.et al. 1993, A&AS, 97, 851Google Scholar
Bressan, A., Fagotto, F., Bertelli, G., Chiosi, C., et al. 1993, A&AS, 100, 647Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 100010.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS, 388, 945Google Scholar
Chabrier, G. 2003, PASP, 115, 76310.1086/376392CrossRefGoogle Scholar
Coless, M.et al. 2001, MNRAS, 328, 103910.1046/j.1365-8711.2001.04902.xCrossRefGoogle Scholar
Conroy, C. 2013, ARA&A, 51, 39310.1146/annurev-astro-082812-141017CrossRefGoogle Scholar
Conroy, C. & Gunn, J. E. 2010, ApJ, 712, 83310.1088/0004-637X/712/2/833CrossRefGoogle Scholar
Croton, D. J. etal 2006, MNRAS, 365, 1110.1111/j.1365-2966.2005.09675.xCrossRefGoogle Scholar
Croton, D. J.et al. 2016, ApJS, 222, 2210.3847/0067-0049/222/2/22CrossRefGoogle Scholar
Davis, M.et al. 2003, Proc. SPIE, 4834, 161Google Scholar
Faber, S. M. 1972, A&A, 20, 361Google Scholar
Fagotto, F., Bressan, A., Bertelli, G., Chiosi, C., et al. 1994a, A&AS, 104, 365Google Scholar
Fagotto, F., Bressan, A., Bertelli, G., Chiosi, C., et al. 1994b, A&AS, 105, 29Google Scholar
Girardi, L., Bressan, A., Chiosi, C., Bertelli, G., Nasi, E., et al. 1996, A&AS, 117, 113Google Scholar
Kelvin, L. S.et al. 2014, MNRAS, 439, 124510.1093/mnras/stt2391CrossRefGoogle Scholar
Spergel, D. N.et al. 2003, ApJS, 148, 17510.1086/377226CrossRefGoogle Scholar
Spinrad, H. & Taylor, B. J. 1971, ApJS, 22, 44510.1086/190232CrossRefGoogle Scholar
Springel, V.et al. 2005, Nature, 435, 62910.1038/nature03597CrossRefGoogle Scholar
Tinsley, B. M. 1968, ApJ, 754, L29Google Scholar
York, D. G.et al. 2000, AJ, 120, 157910.1086/301513CrossRefGoogle Scholar