Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:56:59.977Z Has data issue: false hasContentIssue false

Methanol Masers in the Andromeda Galaxy

Published online by Cambridge University Press:  16 July 2018

Ylva M. Pihlström
Affiliation:
Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87111, USA email: ylva@unm.edu National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road Socorro, NM 87801, USA email: lsjouwer@nrao.edu
Loránt O. Sjouwerman
Affiliation:
National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road Socorro, NM 87801, USA email: lsjouwer@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Is M31 going to collide with the Milky Way, or spiral around it? Determining the gravitational potential in the Local Group has been a challenge since it requires 3D space velocities and orbits of the members, and most objects have only had line-of-sight velocities measured. Compared to the less massive group members, the transverse velocity of M31 is of great interest, as after the Milky Way, M31 is the most dominant constituent and dynamic force in the Local Group. Proper motion studies of M31 are preferentially done using masers, as continuum sources are much weaker, and are enabled through the high angular resolution provided by VLBI in the radio regime. The challenges of achieving high astrometric accuracy at high VLBI frequencies (> 20 GHz) makes observations at lower frequencies attractive, as long as sufficient angular resolution is obtained. In particular, we have discovered 6.7 GHz methanol masers in M31 using the VLA, and here we will address their feasibility as VLBI proper motion targets using a set of global VLBI observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Beasley, A. J., Ellingsen, S. P., Claussen, M. J., & Wilcots, E. 1996, ApJ, 459, 600Google Scholar
Brunthaler, A., Reid, M. J., Falcke, H., Henkel, C., & Menten, K. M. 2007, A&A, 462, 101Google Scholar
Brunthaler, A., Reid, M. J., Falcke, H., Greenhill, L. J., & Henkel, C. 2005, Science, 307, 1440CrossRefGoogle Scholar
Cox, T. J. & Loeb, A. 2008, MNRAS, 386, 461Google Scholar
Darling, J. 2011, ApJLetters 732, L2CrossRefGoogle Scholar
Goldsmith, P. F., Pandian, J. D., & Deshpande, A. A. 2008, ApJ, 680, 1132Google Scholar
Hachisuka, K., Brunthaler, A., Menten, K. M., Reid, M. J., Imai, H., Hagiwara, Y., Miyoshi, M., Horiuchi, S., & Sasao, T. 2006, ApJ, 645, 337Google Scholar
Huchtmeier, W. K., Eckart, A., & Zenzus, A. J. 1988, A&A, 200, 26Google Scholar
Imai, H., Ishihara, Y., Kameya, O., & Nakai, N. 2001, PASJ, 53, 489Google Scholar
Kallivayalil, N., Besla, G., Sanderson, R., & Alcock, C. 2009, ApJ, 700, 924Google Scholar
Loeb, A., Reid, M. J., Brunthaler, A., & Falcke, H. 2005, ApJ, 633, 894Google Scholar
van der Marel, R. P. & Guhathakurta, P. 2008, ApJ, 678, 187Google Scholar
Peebles, P. J. E., Phelps, S. D., Shaya, E. J., & Tully, R. B. 2001, ApJ, 557, 495Google Scholar
Pestalozzi, M. R., Minier, V., & Booth, R. S. 2005, A&A, 432, 737Google Scholar
Piatek, S., Pryor, C. & Olszewski, E. W. 2008, AJ, 135, 1024CrossRefGoogle Scholar
Sjouwerman, L. O., Murray, C. E., Pihlström, Y. M., Fish, V. L., & Araya, E. 2010, ApJLetters 724, L158Google Scholar
Vieira, K., Girard, T. M., van Altena, W. F., Zacharias, N., Casetti-Dinescu, D. I., Korchagin, V. I., Platais, I., Monet, D. G., Lopez, C. E., Herrera, D., & Castillo, D. J. 2010, AJ, 140, 1934Google Scholar