Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T02:37:46.546Z Has data issue: false hasContentIssue false

Pulsar Wind Nebulae: On their growing diversity and association with highly magnetized neutron stars

Published online by Cambridge University Press:  20 March 2013

Samar Safi-Harb*
Affiliation:
Department of Physics & Astronomy, University of Manitoba, Winnipeg, MB, Canada email: samar@physics.umanitoba.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 1968 discovery of the Crab and Vela pulsars in their respective supernova remnants (SNRs) confirmed Baade and Zwicky's 1934 prediction that supernovae form neutron stars. Observations of Pulsar Wind Nebulae (PWNe), particularly with the Chandra X-ray Observatory, have in the past decade opened a new window to focus on the neutron stars' relativistic winds, study their interaction with their hosting SNRs, and find previously missed pulsars. While the Crab has been thought for decades to represent the prototype of PWNe, we now know of different classes of neutron stars and PWNe whose properties differ from the Crab. In this talk, I review the current status of neutron stars/PWNe-SNRs associations, and highlight the growing diversity of PWNe with an X-ray eye on their association with highly magnetized neutron stars. I conclude with an outlook to future high-energy studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arzoumanian, Z.et al.ApJ, 739, 39.Google Scholar
Baade, W. & Zwicky, F. 1934, Proc. Nat. Acad. Sci., 20, 254.Google Scholar
Camilo, F. 2008, Nature Physics, 4, 353.Google Scholar
Chadwick, J. 1932, Proceedings of the Royal Society of London, Series A, 136, 692.Google Scholar
Ferrand, G. & Safi-Harb, S. 2012, Adv. Sp. Res. 49 1313 (arXiv:1202.0245).Google Scholar
Gaensler, B. M. & Slane, P. O. 2006, ARAA, 44, 17.Google Scholar
Gaensler, B. M.et al. 2005, Nature, 434, 1104.Google Scholar
Gavriil, F.et al. 2008, Science, 319, 1802.CrossRefGoogle Scholar
Gold, T. 1968, Nature, 218, 731.Google Scholar
Gonzalez, M. E. & Safi-Harb, S. 2003, ApJ 591 L143.Google Scholar
Gotthelf, E. V. & Halpern, J. P. 2008, in AIP Conference Proceedings, Volume 983, 320.Google Scholar
Harding, A., Contopoulos, I., & Kazanas, D. 1999, ApJ, 525, L125CrossRefGoogle Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709.Google Scholar
Kargaltsev, O. & Pavlov, G. G. 2008, AIP Conference Proceedings, Volume 983, 171.Google Scholar
Keane, E. F.et al. 2011, MNRAS, 415, 3065.Google Scholar
Kumar, H. S. & Safi-Harb, S. 2008, ApJ 678 L43.Google Scholar
Kumar, H. S., Safi-Harb, S., & Gonzalez, M. E. 2012, ApJ, 754, 96.Google Scholar
Large, M. I., Vaughan, A. E., & Mills, B. Y. 1968, Nature, 220, 340.Google Scholar
Lovelace, R. B., Sutton, J. M., & Craft, H. D. 1968, IAU Circ., 2113, 1.Google Scholar
Mereghetti, S. 2008, A&ARv, 15, 225.Google Scholar
Ng, C.-Y. & Kaspi, V. M. 2011, AIP Conference Proceedings, Volume 1379, 60.Google Scholar
Ng, C.-Y., Slane, P. O., Gaensler, B. M., & Hughes, J. P. 2008, ApJ, 686, 508.Google Scholar
Olausen, S. A.et al. 2011, ApJ, 742, 4.Google Scholar
Pacini, F. 1967, Nature, 216, 567.CrossRefGoogle Scholar
Pacini, F. & Salvati, M. 1973, ApJ, 186, 249.Google Scholar
Rea, N.et al. 2009, ApJ 703 L41.Google Scholar
Rees, M. J. & Gunn, J. E. 1974, MNRAS, 167, 1.Google Scholar
Safi-Harb, S. 2012, AIP Conference Proceedings, Gamma2012 symposium (arXiv:1210.5406).Google Scholar
Safi-Harb, S. & Kumar, H. S. 2008, ApJ, 684, 532.Google Scholar
Staelin, D. H. & Reifenstein, E. C. 1968, Science 162 14811483.Google Scholar
Vink, J. & Bamba, A. 2009, ApJ 707 L148.Google Scholar
Weltevrede, P., Johnston, S., & Espinoza, C. M. 2011, MNRAS, 411, 1917.Google Scholar
Younes, G.et al. 2012, ApJ, 757, 39.Google Scholar