Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T14:02:25.900Z Has data issue: false hasContentIssue false

Reference frames, gauge transformations and gravitomagnetism in the post-Newtonian theory of the lunar motion

Published online by Cambridge University Press:  06 January 2010

Yi Xie
Affiliation:
Astronomy Department, Nanjing University, Nanjing, Jiangsu 210093, China Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
Sergei Kopeikin*
Affiliation:
Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Battat, J., Murphy, T. W., Adelberger, E., et al. 2007, APS Meeting Abstracts, 12.003Google Scholar
Brumberg, V. A. 1972, Relativistic Celestial Mechanics, Moscow: Nauka (in Russian)Google Scholar
Brumberg, V. A. 1991, Essential Relativistic Celestial Mechanics, New York: Adam HilgerGoogle Scholar
Brumebrg, V. A. & Kopeikin, S. M. 1989, Nuovo Cimento B, 103, 63CrossRefGoogle Scholar
Ciufolini, I. & Wheeler, J. A. 1995, Gravitation and Inertia, NJ: Princeton University PressCrossRefGoogle Scholar
Ciufolini, I. 2007, arXiv:0704.3338v2Google Scholar
Ciufolini, I. 2008, arXiv:0809.3219v1Google Scholar
Ciufolini, I. & Pavlis, E. C. 2004, Nature, 431, 958CrossRefGoogle Scholar
Einstein, A., Infeld, L., & Hoffmann, B. 1938, The Annals of Mathematics, 39, 65CrossRefGoogle Scholar
Fock, V. A. 1959, The Theory of Space, Time and Gravitation, New York: Pergamon PressGoogle Scholar
Gullstrand, A. 1922, Arkiv. Mat. Astron. Fys., 16, 1Google Scholar
Kopeikin, S. M. 2007, Phys. Rev. Lett., 98, 229001Google Scholar
Kopeikin, S. M. 2008, arXiv:0809.3392v1Google Scholar
Kopeikin, S. M. & Xie, Y. 2009, arXiv:0902.2416v2Google Scholar
Landau, L. D. & Lifshitz, E. M. 1975, The classical theory of fields, Oxford: Pergamon PressGoogle Scholar
Lorentz, H. A. & Droste, J. 1937, Versl. K. Akad. Wet. Amsterdam, 26, 392 (part I) and 649 (part II)Google Scholar
Murphy, T. W. Jr., Nordtvedt, K., & Turyshev, S. G. 2007a, Phys. Rev. Lett., 98, 071102CrossRefGoogle Scholar
Murphy, T. W. Jr., Nordtvedt, K., & Turyshev, S. G. 2007b, Phys. Rev. Lett., 98, 229002Google Scholar
Murphy, T. W., Adelberger, E. G., Battat, J. B. R., et al. , 2008, Publ. Astron. Soc. Pacific, 120, 20Google Scholar
Nordtvedt, K. 1988, Int. J. Theor. Phys., 27, 1395CrossRefGoogle Scholar
Painlevé, P. 1921, C. R. Acad. Sci. (Paris), 173, 677Google Scholar
Petrova, N. M. 1949, Zh. Exp. Theor. Phys., 19, 989Google Scholar
Soffel, M. H. 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy, Berlin: SpringerCrossRefGoogle Scholar
Soffel, M., Klioner, S., Müller, J., & Biskupek, L. 2008, Phy. Rev. D, 78, 024033Google Scholar
Will, C. M. 1993, Theory and Experiment in Gravitational Physics, Cambridge University PressGoogle Scholar
Williams, J. G., Turyshev, S. G., & Murphy, T. W. 2004, IJMPD, 13, 567CrossRefGoogle Scholar