Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T04:10:54.008Z Has data issue: false hasContentIssue false

Resolving distant, dusty galaxies using observations and simulations

Published online by Cambridge University Press:  04 June 2020

R. K. Cochrane*
Affiliation:
SUPA, Institute for Astronomy, Royal Observatory Edinburgh, EH9 3HJ, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spatially resolved studies of galaxies in the high-redshift Universe have traditionally been reliant on data at rest-frame optical and UV wavelengths, which can be biased towards the least dust-obscured galaxies. For several years now, we have been able to resolve and probe the morphology of longer-wavelength emission from distant galaxies with ALMA, and a number of recent ALMA studies were presented at the IAU Symposium No. 352. These included our study of the resolved multi-wavelength emission of galaxies at z ∼ 2. As part of the SHiZELS collaboration, we are mapping the Hα emission line (from SINFONI/VLT), UV continuum (from HST), and the far-infrared (from ALMA) emission from a small sample of Hα-selected galaxies. In this proceedings paper, we showcase the high quality of our data, and the spectacular structures displayed by one of our most dusty sources. We also provide an overview of some highly complementary simulation-based work, using galaxies drawn from the FIRE-2 zoom-in cosmological hydrodynamical simulations. Using sophisticated radiative transfer techniques, we have derived predictions for the spatially-resolved emission of a sample of star-forming galaxies, from rest-frame far-ultraviolet to the far-infrared. For both observed and simulated galaxies, emission maps show striking differences with wavelength, with the same galaxy appearing clumpy and extended in the far-ultraviolet yet compact at far-infrared wavelengths.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baes, M.et al. 2011, ApJS, 196, 2210.1088/0067-0049/196/2/22CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 35, 1Google Scholar
Calistro Rivera, G.et al. 2018, ApJ, 863, 5610.3847/1538-4357/aacffaCrossRefGoogle Scholar
Camps, P. & Baes, M. 2015, Astron. Comput., 9, 2010.1016/j.ascom.2014.10.004CrossRefGoogle Scholar
Chen, C.-C.et al. 2017, ApJ, 846, 10810.3847/1538-4357/aa863aCrossRefGoogle Scholar
Cochrane, R. K., Best, P. N., Sobral, D., Smail, I., Wake, D. A., Stott, J. P., & Geach, E. 2017, MNRAS, 469, 291310.1093/mnras/stx957CrossRefGoogle Scholar
Cochrane, R. K., Best, P. N., Sobral, D., Smail, I., Geach, J. E., Stott, J. P., & Wake, D. A. 2018, MNRAS, 475, 373010.1093/mnras/stx3345CrossRefGoogle Scholar
Cochrane, R. K.et al. 2019, MNRAS, 488, 1779178910.1093/mnras/stz1736CrossRefGoogle Scholar
Draine, B. T. & Salpeter, E. E. 1979, ApJ, 231, 7710.1086/157165CrossRefGoogle Scholar
Dunlop, J. S.et al. 2017, MNRAS, 466, 86110.1093/mnras/stw3088CrossRefGoogle Scholar
Dwek, E. 1998, ApJ, 501, 64310.1086/305829CrossRefGoogle Scholar
Feldmann, R., Hopkins, P. F., Quataert, E., Faucher-Giguère, C.-A., & Kereš, D. 2016, MNRAS, 458, L1410.1093/mnrasl/slw014CrossRefGoogle Scholar
Feldmann, R., Quataert, E., Hopkins, P. F., Faucher-Giguère, C. A., & Kereš, D. 2017, MNRAS, 470, 105010.1093/mnras/stx1120CrossRefGoogle Scholar
Kennicutt, R. C. & Evans, N. J. 2012, ARA&A, 50, 53110.1146/annurev-astro-081811-125610CrossRefGoogle Scholar
Hodge, J. A.et al. 2016, ApJ, 833, 10310.3847/1538-4357/833/1/103CrossRefGoogle Scholar
Hopkins, P. F., Kereš, D., Oñorbe, J., Faucher-Giguère, C. A., Quataert, E., Murray, N., & Bullock, J. S. 2014, MNRAS, 445, 58110.1093/mnras/stu1738CrossRefGoogle Scholar
Hopkins, P. F.et al. 2018, MNRAS, 480, 80010.1093/mnras/sty1690CrossRefGoogle Scholar
James, A., Dunne, L., Eales, S., & Edmunds, M. G. 2002, MNRAS, 335, 75310.1046/j.1365-8711.2002.05660.xCrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Faucher-Giguère, C. A., Zolman, N., Muratov, A. L., Kereš, D., & Quataert, E. 2016, MNRAS, 456, 214010.1093/mnras/stv2659CrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Wetzel, A. R., Kirby, E. N., Anglés-Alcázar, D., Faucher-Giguère, C.-A., Kereš, D., & Quataert, E. 2017, MNRAS, 467, 243010.1093/mnras/stx273CrossRefGoogle Scholar
Molina, J., Ibar, E., Swinbank, A. M., Sobral, D., Best, P. N., Smail, I., Escala, A., & Cirasuolo, M. 2017, MNRAS, 466, 89210.1093/mnras/stw3120CrossRefGoogle Scholar
Sobral, D.et al. 2009, MNRAS, 398, 7510.1111/j.1365-2966.2009.15129.xCrossRefGoogle Scholar
Sobral, D., Best, P. N., Geach, J. E., Smail, I., Cirasuolo, M., Garn, T., Dalton, G. B., & Kurk, J. 2010, MNRAS, 1563, 1551Google Scholar
Sobral, D.et al. 2013, ApJ, 779, 13910.1088/0004-637X/779/2/139CrossRefGoogle Scholar
Sobral, D., Best, P. N., Smail, I., Mobasher, B., Stott, J., & Nisbet, D. 2014, MNRAS, 427, 351610.1093/mnras/stt2159CrossRefGoogle Scholar
Sobral, D.et al. 2015, MNRAS, 451, 230310.1093/mnras/stv1076CrossRefGoogle Scholar
Sparre, M., Hayward, C. C., Feldmann, R., Faucher-Giguère, C. A., Muratov, A. L., Kereš, D., & Hopkins, P. F. 2017, MNRAS, 466, 8810.1093/mnras/stw3011CrossRefGoogle Scholar
Swinbank, A. M., Sobral, D., Smail, I., Geach, J. E., Best, P. N., Mccarthy, I. G., Crain, R. A., & Theuns, T. 2012a, MNRAS, 426, 93510.1111/j.1365-2966.2012.21774.xCrossRefGoogle Scholar
Swinbank, A. M., Smail, I., Sobral, D., Theuns, T., Best, P. N., & Geach, J. E. 2012b, ApJ, 760, 1310.1088/0004-637X/760/2/130CrossRefGoogle Scholar
Tielens, A. G. G. M., McKee, C. F., Seab, C. G., & Hollenbach, D. J. 1994, ApJ, 431, 32110.1086/174488CrossRefGoogle Scholar
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 29610.1086/318651CrossRefGoogle Scholar
van de Voort, F., Quataert, E., Hopkins, P. F., Kereš, D., Faucher-Giguère, C. A. 2015, MNRAS, 447, 14010.1093/mnras/stu2404CrossRefGoogle Scholar