Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T22:43:42.909Z Has data issue: false hasContentIssue false

Review of the ultrafast time resolution photopolarimeters based on SPADs

Published online by Cambridge University Press:  18 February 2014

Aga Słowikowska
Affiliation:
Kepler Institute of Astronomy, University of Zielona Góra, Zielona Góra, Poland
Gottfried Kanbach
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Garching, Germany
Krzysztof Goździewski
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Toruń, Poland
Krzysztof Krzeszowski
Affiliation:
Kepler Institute of Astronomy, University of Zielona Góra, Zielona Góra, Poland
Arne Rau
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review photopolarimeters that are based on the Single Photon Avalanche Diodes (SPADs) and were designed, built, developed, and extensively used for high time resolution studies of astrophysical sources. Examples of such detectors are OPTIMA, GASP, AquEYE, and IquEYE which can measure the time of arrival of single optical photons with an accuracy of down to 50 picoseconds. We describe the most exciting results obtained with the SPADs detectors starting from the best existing optical polarimetric measurements of the Crab pulsar, the discovery of the first optical magnetar and its quasi-periodic oscillations, as well as a verification of exoplanets around eclipsing cataclysmic variables. Additionally, we discuss possible applications of such detectors for asteroseismology.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barbieri, C., Naletto, G., Capraro, I., et al. 2009, Proc. SPIE, 7355, 15Google Scholar
Barbieri, C., Naletto, G., Zampieri, L., et al. 2012, in: Griffin, R. E. M., Hanisch, R. J., & Seaman, R. (eds.), New Horizons in Time-Domain Astronomy, Proc. IAU Symposium No. 285 (Cambridge: Cambridge University Press), p. 280Google Scholar
Germanà, C., Zampieri, L., Barbieri, C., et al. 2012, A&A, 548, A47Google Scholar
Goździewski, K., Nasiroglu, I., Słowikowska, A., et al. 2012, MNRAS, 425, 930CrossRefGoogle Scholar
Kanbach, G., Kellner, S., Schrey, F. Z., et al. 2003, Proc. SPIE, 4841, 82Google Scholar
Kanbach, G., Stefanescu, A., Duscha, S., et al. 2008, ASSL, 351, 153Google Scholar
Kyne, G., Sheehan, B., Collins, P., Redfern, M., & Shearer, A. 2010, EPJ Web of Conferences, 5, 5003CrossRefGoogle Scholar
Moran, P., Shearer, A., Mignani, R. P., et al. 2013, MNRAS, 433, 2564Google Scholar
Naletto, G., Barbieri, C., Occhipinti, T., et al. 2009, A&A, 508, 531Google Scholar
Nasiroglu, I., Słowikowska, A., Kanbach, G., & Haberl, F. 2012, MNRAS, 420, 3350Google Scholar
Słowikowska, A., Kanbach, G., Kramer, M., & Stefanescu, A. 2009, MNRAS, 397, 103CrossRefGoogle Scholar
Słowikowska, A., Goździewski, K., Nasiroglu, I., et al. 2013, ASP-CS, 469, 363Google Scholar
Stefanescu, A. 2011, Ph.D. Thesis, Technische Universität MünchenGoogle Scholar
Stefanescu, A., Kanbach, G., Słowikowska, A., et al. 2008, Nature, 455, 503CrossRefGoogle Scholar
Straubmeier, C. 2001, Ph.D. Thesis, Technische Universität MünchenGoogle Scholar