Published online by Cambridge University Press: 14 May 2020
Through vertical resonances, bars can produce pseudo-bulges, within secular evolution. Bulges and pseudo-bulges have doubled their mass since z=1. The frequency of bulge-less galaxies at z=0 is difficult to explain, especially since clumpy galaxies at high z should create classical bulges in all galaxies. This issue is solved in modified gravity models. Bars and spirals in a galaxy disk, produce gravity torques that drive the gas to the center and fuel central star formation and nuclear activity. At 0.1-1kpc scale, observations of gravity torques show that only about one third of Seyfert galaxies experience molecular inflow and central fueling, while in most cases the gas is stalled in resonant rings. At 10-20pc scale, some galaxies have clearly revealed AGN fueling due to nuclear trailing spirals, influenced by the black hole potential. Thanks to ALMA, and angular resolution of up to 80mas, it is possible to reach the central black hole (BH) zone of influence, discover molecular tori, circum-nuclear disks misaligned with the galaxy, and the BH mass can be derived more directly from the kinematics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.