No CrossRef data available.
Published online by Cambridge University Press: 12 September 2016
Because the formation of protostars is believed to be closely tied to the angular momentum problem of star formation, characterizing the properties of the youngest disks around Class 0 objects is crucial. However, not much is known on the structure of the youngest protostellar envelopes, on the small scales at which disks and multiple systems are observed around more evolved YSOs, due to a lack of comprehensive high angular resolution observations (probing <100 AU). In order to tackle this issue, we conducted a large observing program with the IRAM Plateau de Bure interferometer (PdBI): the CALYPSO survey, providing us with detailed maps of molecular lines and millimeter continuum emission, probing scales down to ~30–50 au towards a sample of 17 Class 0 protostars. Here we present our analysis of the CALYPSO dust continuum emission maps, constraining disk properties of the Class 0 protostars in our sample. We show that large, r > 50 au, disk structures are not observed in most Class 0 protostars from our sample, which can be described by various envelope models reproducing satisfactorily the intensity distribution of the dust emission at all scales from 50 au to 5000 au.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.