Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T10:50:57.431Z Has data issue: false hasContentIssue false

Spin-orbit resonances and rotation of coorbital bodies in quasi-circular orbits

Published online by Cambridge University Press:  05 January 2015

Robutel Philippe
Affiliation:
IMCCE, Observatoire de Paris, UPMC Univ. Paris 06, Univ. Lille 1, CNRS, 77 Av.Denfert-Rochereau, 75014 Paris, France email: robutel@imcce.fr
C. M. Correia Alexandre
Affiliation:
IMCCE, Observatoire de Paris, UPMC Univ. Paris 06, Univ. Lille 1, CNRS, 77 Av.Denfert-Rochereau, 75014 Paris, France email: robutel@imcce.fr Departamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal email: correia@ua.pt
Leleu Adrien
Affiliation:
IMCCE, Observatoire de Paris, UPMC Univ. Paris 06, Univ. Lille 1, CNRS, 77 Av.Denfert-Rochereau, 75014 Paris, France email: robutel@imcce.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rotation of asymmetric bodies in eccentric Keplerian orbits can be chaotic when there is some overlap of spin-orbit resonances. Here we show that the rotation of two coorbital bodies (two planets orbiting a star or two satellites of a planet) can also be chaotic even for quasi-circular orbits around the central body. When dissipation is present, the rotation period of a body on a nearly circular orbit is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We further show that the rotation becomes chaotic when the natural rotational libration frequency, due to the axial asymmetry, is of the same order of magnitude as the orbital libration frequency.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Correia, A. C. M. & Robutel, P. 2013, AJ, 779, 20CrossRefGoogle Scholar
Érdi, B. 1977, Celestial Mechanics, 15, 367CrossRefGoogle Scholar
Goldreich, P. & Peale, S. 1966, ApJ, 71, 425CrossRefGoogle Scholar
Mignard, F. 1979, Moon and Planets, 20, 301CrossRefGoogle Scholar
Morbidelli, A. 2002, Modern Celestial Mechanics (London: Taylor and Francis)Google Scholar
Morais, M. H. M. 1999, A&A, 350, 318Google Scholar
Robutel, P., Rambaux, N., & Castillo-Rogez, J. 2011, Icarus, 211, 758CrossRefGoogle Scholar
Wisdom, J., Peale, S. J., & Mignard, F. 1984, Icarus, 58, 137CrossRefGoogle Scholar