Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:40:47.880Z Has data issue: false hasContentIssue false

Star Formation in Disks: Spiral Arms, Turbulence, and Triggering Mechanisms

Published online by Cambridge University Press:  01 June 2008

Bruce G. Elmegreen*
Affiliation:
IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts. 10598, USA email: bge@us.ibm.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation is enhanced in spiral arms because of a combination of orbit crowding, cloud collisions, and gravitational instabilities. The characteristic mass for the instability is 107M in gas and 105M in stars, and the morphology is the familiar beads on a string with 1-2 kpc separation. Similar instabilities occur in resonance rings and tidal tails. Sequential triggering from stellar pressure occurs in two ways. For short times and near distances, it occurs in the bright rims and dense knots that lag behind during cloud dispersal. For long times, it occurs in swept-up shells and along the periphery of cleared regions. The first case should be common but difficult to disentangle from independent star formation in the same cloud. The second case has a causality condition and a collapse condition and is often easy to recognize. Turbulent triggering produces a hierarchy of dense cloudy structure and an associated hierarchy of young star positions. There should also be a correlation between the duration of star formation and the size of the region that is analogous to the size-linewidth relation in the gas. The cosmological context is provided by observations of star formation in high redshift galaxies. Sequential and turbulent triggering is not yet observable, but gravitational instabilities are, and they show a scale up from local instabilities by a factor of ~3 in size and ~100 in mass. This is most easily explained as the result of an increase in the ISM turbulent speed by a factor of ~5. In the clumpiest galaxies at high redshift, the clumps are so large that they should interact with each other and merge in the center, where they form or contribute to the bulge.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abraham, R., Tanvir, N., Santiago, B., Ellis, R., Glazebrook, K., & van den Bergh, S. 1996a, MNRAS, 279, L47CrossRefGoogle Scholar
Abraham, R., van den Bergh, S., Glazebrook, K., Ellis, R., Santiago, B., Surma, P., & Griffiths, R. 1996b, ApJS, 107, 1CrossRefGoogle Scholar
Bate, M. R. & Bonnell, I. A. 2005, MNRAS, 356, 1201CrossRefGoogle Scholar
Beckwith, S. V. W., et al. 2006, AJ, 132, 1729CrossRefGoogle Scholar
Bonnell, I. A., Dobbs, C. L., Robitaille, T. P., & Pringle, J. E. 2006, MNRAS, 365, 37CrossRefGoogle Scholar
Bonnell, I. A., Larson, R. B., & Zinnecker, H. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds), Protostars and Planets VI (Tucson, Univ of Arizona), p. 149Google Scholar
Bournaud, F., Elmegreen, B. G., & Elmegreen, D. M. 2007a, ApJ, 670, 237CrossRefGoogle Scholar
Bournaud, F., Daddi, E., Elmegreen, B. G., Elmegreen, D. M., & Elbaz, D. 2008, A&A in press, astroph/0803.3831Google Scholar
Brinks, E. & Bajaja, E. 1986, A&A, 169, 14Google Scholar
Conselice, C. J., Blackburne, J. A., & Papovich, C. 2005a, ApJ, 620, 564CrossRefGoogle Scholar
Dahm, S. E. & Simon, T. 2005, AJ, 129, 829CrossRefGoogle Scholar
de Geus, E. J. 1992, A&A, 262, 258Google Scholar
Dekel, A. & Silk, J. 1986, ApJ, 303, 39CrossRefGoogle Scholar
Dobbs, C. L. & Bonnell, I. A. 2007, MNRAS, 374, 1115CrossRefGoogle Scholar
Efremov, Y. N. 1995, AJ, 110, 2757CrossRefGoogle Scholar
Efremov, Yu. N. & Elmegreen, B. G. 1998, MNRAS, 299, 588CrossRefGoogle Scholar
Elmegreen, B. G. 1994, ApJ, 427, 384CrossRefGoogle Scholar
Elmegreen, B. G. 2007, ApJ, 668, 1064CrossRefGoogle Scholar
Elmegreen, B. G. 2008a, in: de Koter, A., Smith, L. J., & Waters, L. B. F. M. (eds), Mass Loss from Stars and the Evolution of Stellar Clusters (San Francisco: Astronomical Society of the Pacific), p. 249Google Scholar
Elmegreen, B. G. 2008b, ApJ, 672, 1006CrossRefGoogle Scholar
Elmegreen, B. G. & Efremov, Y. N. 1996, ApJ, 466, 802CrossRefGoogle Scholar
Elmegreen, B. G. & Efremov, Y. N. 1997, ApJ 480, 235CrossRefGoogle Scholar
Elmegreen, B. G., Palous, J., & Ehlerova, S. 2002, MNRAS, 334, 693CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2005, ApJ, 627, 632CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S., & Schaffer, M. A. 2005, ApJ, 631, 85CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2006a, ApJ, 650, 644 thick disksCrossRefGoogle Scholar
Elmegreen, D. M. & Elmegreen, B. G. 2006b, ApJ, 651, 676 rings bend chainsCrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Ferguson, T., & Mullan, B. 2007a, ApJ, 663, 734 tidal tailsCrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Ravindranath, S., & Coe, D. A. 2007b, ApJ, 658, 763CrossRefGoogle Scholar
Elmegreen, B. G., Bournaud, F., & Elmegreen, D. M. 2008a, ApJ, 684, in pressCrossRefGoogle Scholar
Elmegreen, B. G., Bournaud, F., & Elmegreen, D. M. 2008b, ApJ, submittedGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Fernandez, M. X., & Lemonias, J. J. 2008c, ApJ, submittedGoogle Scholar
Engargiola, G., Plambeck, R. L., Rosolowsky, E., & Blitz, L. 2003, ApJS, 149, 343CrossRefGoogle Scholar
Förster Schreiber, N. M., et al. 2006, ApJ, 645, 1062CrossRefGoogle Scholar
Fuchs, B., Dettbarn, C., & Tsuchiya, T. 2005, A&A, 444, 1Google Scholar
Garcia-Burillo, S., Guelin, M., & Cernicharo, J. 1993, A&A, 274, 123Google Scholar
Genzel, R., et al. 2006, Nature, 442, 786CrossRefGoogle Scholar
Genzel, R., et al. 2008, ApJ, in press, aarXiv:0807.1184CrossRefGoogle Scholar
Gutermuth, R. A., Megeath, S. T., Pipher, J. L., Williams, J. P., Allen, L. E., Myers, P. C., & Raines, S. N. 2005, ApJ, 632, 397CrossRefGoogle Scholar
Hester, J. et al. 1996, AJ, 111, 2349CrossRefGoogle Scholar
Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004a, A&A, 413, 547Google Scholar
Immeli, A., Samland, M., Westera, P., & Gerhard, O. 2004b, ApJ, 611, 20CrossRefGoogle Scholar
Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M. 2005, A&A, 435, 611Google Scholar
Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, , & Eve, C. 2006, ApJ, 649, L13CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E. C. 2002, ApJ, 570, 132CrossRefGoogle Scholar
Kim, W.-T., Ostriker, E. C., & Stone, J. M. 2003, ApJ, 599, 1157CrossRefGoogle Scholar
Kosiński, R. & Hanasz, M. 2006, MNRAS, 368, 759CrossRefGoogle Scholar
La Vigne, M. A., Vogel, S. N., & Ostriker, E. C. 2006, ApJ, 650, 818CrossRefGoogle Scholar
Lee, S. M. & Hong, S. S. 2007, ApJS, 169, 269CrossRefGoogle Scholar
Li, P. S., Norman, M. L., Mac Low, M.-M., & Heitsch, F. 2004, ApJ, 605, 800CrossRefGoogle Scholar
Luna, A., Bronfman, L., Carrasco, L., & May, J. 2006, ApJ, 641, 938CrossRefGoogle Scholar
Lundgren, A. A., Olofsson, H., Wiklind, T., & Rydbeck, G. 2004, A&A, 422, 865Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, RvMP, 76, 125Google Scholar
Martel, H., Evans, N. J. II, & Shapiro, P. R. 2006, ApJS, 163, 122CrossRefGoogle Scholar
Nakamura, F. & Li, Z.-Y. 2005, ApJ, 631, 411CrossRefGoogle Scholar
Noguchi, M. 1999, ApJ, 514, 77CrossRefGoogle Scholar
Odekon, M. C. 2008, ApJ, 681, 1248CrossRefGoogle Scholar
Oey, M. S., Watson, A. M., Kern, K., & Walth, G. L. 2005, AJ, 129, 393CrossRefGoogle Scholar
Padoan, P., Kritsuk, A., Norman, M. L., & Nordlund, A. 2005, Memorie della Societa Astronomica Italiana, 76, 187Google Scholar
Reach, W. T., et al. 2004, ApJS, 154, 385CrossRefGoogle Scholar
Robertson, B. E. & Kravtsov, A. V. 2008, ApJ, 680, 1083CrossRefGoogle Scholar
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1138Google Scholar
Solomon, P. & Vanden Bout, P. 2005, ARA&A, 43, 677Google Scholar
Srianand, R.Noterdaeme, P., Ledoux, C., & Petitjean, P. 2008, A&A, 482, L39Google Scholar
Stützki, J., Bensch, F., Heithausen, A., Ossenkopf, V., & Zielinsky, M. 1998, A&A, 336, 697Google Scholar
Sugitani, K., Fukui, Y., Mizuni, A., & Ohashi, N. 1989, ApJ, 342, L87CrossRefGoogle Scholar
Tacconi, L. J. et al. 2008, ApJ, 680, 246CrossRefGoogle Scholar
Testi, L., Sargent, A. I., Olmi, L., & Onello, J. S. 2000, ApJ, 540, L53CrossRefGoogle Scholar
Tilley, D. A. & Pudritz, R. E. 2007, MNRAS, 382, 73CrossRefGoogle Scholar
Tosaki, T., Hasegawa, T., Shioya, Y., Kuno, N., & Matsushita, S. 2002, PASJ, 54, 209CrossRefGoogle Scholar
Yamaguchi, R., Mizuno, N., Onishi, T., Mizuno, A., & Fukui, Y. 2001a, PASJ, 53, 959CrossRefGoogle Scholar
Yamaguchi, R., Mizuno, N., Onishi, T., Mizuno, A., & Fukui, Y. 2001b, PASJ, 553, L185Google Scholar
Walter, F. & Brinks, E. 1999, AJ, 118, 273CrossRefGoogle Scholar
Weiner, B. J., et al. 2006, ApJ, 653, 1027CrossRefGoogle Scholar
Whitworth, A. P., Bhattal, A. S., Chapman, S. J., Disney, M. J., & Turner, J. A. 1994, A&A, 290, 421Google Scholar
Wilcots, E. M. & Miller, B. W. 1998, AJ, 116, 2363CrossRefGoogle Scholar
Wolfe, A. M., Prochaska, J. X., Jorgenson, R. A., & Rafelski, M. 2008, arXiv:0802.3914Google Scholar
Zavagno, A., Deharveng, L., Comerón, F., Brand, J., Massi, F., Caplan, J., & Russeil, D. 2006, A&A, 446, 171Google Scholar