Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:06:10.920Z Has data issue: false hasContentIssue false

Stellar halos around Local Group galaxies

Published online by Cambridge University Press:  09 May 2016

Alan W. McConnachie*
Affiliation:
NRC Herzberg, Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria, British Columbia, Canada, V(E2E7 email: alan.mcconnachie@nrc-cnrc.gc.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011M. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Amorisco, N. C., Evans, N. W., & van de Ven, G. 2014, Nature, 507, 335Google Scholar
Chandar, R., Bianchi, L., Ford, H. C., & Sarajedini, A. 2002, ApJ, 564, 712Google Scholar
Chapman, S. C., Widrow, L., Collins, M. L. M., et al. 2013, MNRAS, 430, 37Google Scholar
Cockcroft, R., McConnachie, A. W., Harris, W. E., et al. 2013, MNRAS, 428, 1248CrossRefGoogle Scholar
Ho, N., Geha, M., Munoz, R. R., et al. 2012, ApJ, 758, 124Google Scholar
Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al. 2014, ApJ, 780, 128CrossRefGoogle Scholar
Ibata, R., Martin, N. F., Irwin, M., et al. 2007, ApJ, 671, 1591Google Scholar
Martin, N. F., Ibata, R. A., McConnachie, A. W., et al. 2013, Apj, 776, 80Google Scholar
McConnachie, A. W. 2012, AJ, 144, 4Google Scholar
McConnachie, A. W., Chapman, S. C., Ibata, R. A., et al. 2006, ApJ, 647, L25Google Scholar
McConnachie, A. W., Ferguson, A. M. N., Irwin, M. J., et al. 2010, ApJ, 723, 1038Google Scholar
McConnachie, A. W., Arimoto, N., & Irwin, M. 2007, MNRAS, 379, 379Google Scholar
McConnachie, A. W. & Irwin, M. J. 2006, MNRAS, 365, 1263Google Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Nature, 461, 66Google Scholar
Richardson, J. C., Irwin, M. J., McConnachie, A. W., et al. 2011, ApJ, 732, 76CrossRefGoogle Scholar
Sarajedini, A., Barker, M. K., Geisler, D., Harding, P., & Schommer, R. 2006, AJ, 132, 1361Google Scholar
Weisz, D. R., Skillman, E. D., Hidalgo, S. L., et al. 2014, ApJ, 789, 24Google Scholar