No CrossRef data available.
Article contents
Stellar mass fraction and quasar accretion disk size in SDSS J1004+4112 from photometric follow-up
Published online by Cambridge University Press: 04 March 2024
Abstract
The gravitational lens SDSS J1004+4112 was the first discovered system where a background quasar is lensed by a galaxy cluster instead of a single galaxy. We use the 14.5-year r-band light curves together with the recently measured time delay of the fourth brightest quasar image (Munõz et al. (2022)) and the mass model from Forés-Toribio et al. (2022) to study the microlensing effect in this system. We constrain the quasar accretion disk size to light-days at 2407Å in the restframe which is compatible with most previous estimates. We also infer the fraction of mass in stars at the positions of the quasar images: $${\alpha _A} = 0.058_{ - 0.032}^{ + 0.024},{\alpha _B} = 0.048_{ - 0.014}^{ + 0.032},{\alpha _C} = 0.018_{ - 0.018}^{ + 0.015}$$ and $${\alpha _D} = 0.008_{ - 0.008}^{ + 0.033}$$. The stellar fraction estimates are reasonable for intracluster medium although the stellar fractions at images A and B are slightly larger, suggesting the presence of a near undetected galaxy.
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 18 , Symposium S381: Strong Gravitational Lensing in the Era of Big Data , December 2022 , pp. 157 - 161
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union