Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-16T19:44:52.206Z Has data issue: false hasContentIssue false

Tips learned from panchromatic modeling of AGNs

Published online by Cambridge University Press:  10 June 2020

Y. Sophia Dai*
Affiliation:
Chinese Academy of Sciences South America Center for Astronomy (CASSACA)/National Astronomical Observatories of China (NAOC), 20A Datun Road, Beijing 100101, China email: daysophia@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I will review the tips learned from panchromatic modeling of active galactic nuclei (AGNs), based on our recent work to study the relationship between AGN and star formation (SF). Several AGN SED models are compared, and a significant AGN contribution is found in the IR luminosities and corresponding star formation rates (SFRs). I will review the AGN-SF relation and how different parameters and sample selections affect the observed correlation. I will then report on the constant ratio discovered between the SFR and the black hole mass accretion rate (BHAR), and their implications on the gas supply and galaxy formation history of these systems. Caveats and important questions to answer are summarized at the end.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barger, A. J., Cowie, L. L., Owen, F. N., Chen, C. C., Hasinger, G., Hsu, L. Y., Li, Y., et al. 2015, ApJ, 801, 8710.1088/0004-637X/801/2/87CrossRefGoogle Scholar
Cowley, M. J., Spitler, L. R., Quadri, R. F., Goulding, A. D., Papovich, C., Tran, K. V. H., Labbé, I., Alcorn, L., et al. 2018, MNRAS, 473, 371010.1093/mnras/stx2587CrossRefGoogle Scholar
Dai, Y. S., Wilkes, B. J., Bergeron, J., Kuraszkiewicz, J., Omont, A., Atanas, A., Teplitz, H. I, et al. 2018, MNRAS, 478, 423810.1093/mnras/sty1341CrossRefGoogle Scholar
Dai, Y. S., Bergeron, J., Elvis, M., Omont, A., Huang, J.-S., Bock, J., Cooray, A., Fazio, G. G., et al. 2012, ApJ, 753, 33, D1210.1088/0004-637X/753/1/33CrossRefGoogle Scholar
Dale, D. A., Helou, G., Magdis, G. E., Armus, L., Dìaz-Santos, T., Shi, Y., et al. 2014, ApJ, 784, 8310.1088/0004-637X/784/1/83CrossRefGoogle Scholar
Elvis, M., Wilkes, B. J., McDowell, J. C., Green, R. F., Bechtold, J., Willner, S. P., Oey, M. S., Polomski, E., et al. 1994, ApJS, 95, 110.1086/192093CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Harris, K., Farrah, D., Schulz, B., Hatziminaoglou, E., Viero, M., Anderson, N., Béthermin, M., Chapman, S., et al. 2016, MNRAS, 457, 417910.1093/mnras/stw286CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., Springel, V., et al. 2006, ApJS, 163, 110.1086/499298CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Lutz, D., Mainieri, V., Rafferty, D., Shao, L., Hasinger, G., Weiß, A., Walter, F., Smail, I., et al. 2010, ApJ, 712, 128710.1088/0004-637X/712/2/1287CrossRefGoogle Scholar
Netzer, H. 2009, MNRAS, 399, 190710.1111/j.1365-2966.2009.15434.xCrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S. M., Gebhardt, K., et al. 1998, AJ, 115, 228510.1086/300353CrossRefGoogle Scholar
Marconi, A. & Hunt, L. K. 2003, ApJ, 589, L2110.1086/375804CrossRefGoogle Scholar
Matsuoka, K. & Woo, J.-H. 2015, ApJ, 807, 2810.1088/0004-637X/807/1/28CrossRefGoogle Scholar
Mullaney, J. R., Daddi, E., Béthermin, M., Elbaz, D.; Juneau, S., Pannella, M., Sargent, M. T., Alexander, D. M., et al. 2012b, ApJL, 753, L3010.1088/2041-8205/753/2/L30CrossRefGoogle Scholar
Mullaney, J. R., Alexander, D. M., Goulding, A. D., Hickox, R. C., et al. 2011, MNRAS, 414, 108210.1111/j.1365-2966.2011.18448.xCrossRefGoogle Scholar
Page, M. J., Symeonidis, M., Vieira, J. D., Altieri, B., Amblard, A., Arumugam, V., Aussel, H., Babbedge, T., et al. 2012, Nature, 485, 21310.1038/nature11096CrossRefGoogle Scholar
Peng, C. Y. 2007, ApJ, 671, 109810.1086/522774CrossRefGoogle Scholar
Pitchford, L. K., Hatziminaoglou, E., Feltre, A., Farrah, D., Clarke, C., Harris, K. A., Hurley, P., Oliver, S., et al. 2016, MNRAS, 462, 406710.1093/mnras/stw1840CrossRefGoogle Scholar
Reines, A. E. & Volonteri, M. 2015, ApJ, 813, 8210.1088/0004-637X/813/2/82CrossRefGoogle Scholar
Richards, G. T., Lacy, M., Storrie-Lombardi, L. J., Hall, P. B., Gallagher, S. C., Hines, D. C., Fan, X., Papovich, C., et al. 2006, ApJS, 166, 47010.1086/506525CrossRefGoogle Scholar
Rivera et al. 2016, ApJ, 833, 98C10.3847/1538-4357/833/1/98CrossRefGoogle Scholar
Rosario, D. J., Santini, P., Lutz, D., Shao, L., Maiolino, R., Alexander, D. M., Altieri, B., Andreani, P., et al. 2012, A&A, 545, A45Google Scholar
Rosario, D. J., Burtscher, L., Davies, R. I, Koss, M., Ricci, C., Lutz, D., Riffel, R., Alexander, D. M., et al. 2018, MNRAS, 473, 565810.1093/mnras/stx2670CrossRefGoogle Scholar
Shimizu, T. T., Mushotzky, R. F., Meléndez, M., Koss, Michael J., Barger, Amy J., Cowie, L. L., et al. 2017, MNRAS, 466, 316110.1093/mnras/stw3268CrossRefGoogle Scholar
Springel, V., White, S. D. M., Jenkins, A., Frenk, Carlos S.; Yoshida, N., Gao, L., Navarro, J., Thacker, R., et al. 2005, Nature, 435, 62910.1038/nature03597CrossRefGoogle Scholar
Stanley, F., Harrison, C. M., Alexander, D. M., Swinbank, A. M., Aird, J. A., Del Moro, A., Hickox, R. C., Mullaney, J. R., et al. 2015, MNRAS, 453, 59110.1093/mnras/stv1678CrossRefGoogle Scholar
Yang, G., Chen, C.-T. J., Vito, F., Brandt, W. N., Alexander, D. M., Luo, B., Sun, M. Y., Xue, Y. Q., et al. 2017, ApJ, 842, 7210.3847/1538-4357/aa7564CrossRefGoogle Scholar