Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T08:48:00.612Z Has data issue: false hasContentIssue false

Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation

Published online by Cambridge University Press:  28 February 2007

Michael K. Theodorou
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB
Georgina Mennim
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB School of Biological Sciences, University of Manchester, Stopford Building, ManchesterM13 9PT
David R. Davies
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB
Wei-Yun Zhu
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB
Anthony P. J. Trinci
Affiliation:
School of Biological Sciences, University of Manchester, Stopford Building, ManchesterM13 9PT
Jayne L. Brookman
Affiliation:
School of Biological Sciences, University of Manchester, Stopford Building, ManchesterM13 9PT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
‘The nutritional consequences of complex carbohydrates’ Symposium 2
Copyright
Copyright © The Nutrition Society 1996

References

Akin, D. E., Borneman, W. S. & Lyon, C. E. (1990). Degradation of leaf blades and stems by monocentric and polycentric isolates of ruminal fungi. Animal Feed Science and Technology 31, 205221.CrossRefGoogle Scholar
Akin, D. E. & Chesson, A. (1989). Lignification as a major factor limiting forage feeding value especially in warm conditions. Proceedings of the International Grassland Congress 16, 17531760.Google Scholar
Akin, D. E., Gordon, G. L. R & Hogan, J. P. (1983). Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Applied Environmental Microbiology 46, 738748.CrossRefGoogle ScholarPubMed
Atushi, K., Azuma, J.-1.& Koshijima, T (1984). Lignin-carbohydrate complexes and phenolic acids in bagasse. Holzforschung 38 141149.CrossRefGoogle Scholar
Bauchop, T. (1979 a). Rumen anaerobic fungi of cattle and sheep. Applied Environmental Microbiology 38, 148158.CrossRefGoogle ScholarPubMed
Bauchop, T. (1979 b). The rumen anaerobic fungi: colonizers of plant fibre. Annales de Recherches Veterinaires 10, 246248.Google ScholarPubMed
Bauchop, T. (1983). The gut anaerobic fungi: colonisers of dietary fibre. In Fibre in Human and Animal Nutrition, pp. 143148 [Wallace, G. and Bell, L., editors]. Wellington: Royal Society of New Zealand.Google Scholar
Bauchop, T & Mountfort, D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens. Applied Environmental Microbiology 42, 11031110.CrossRefGoogle ScholarPubMed
Bedford, M. R. & Classen, H. L. (1992). Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. Journal of Nutrition 122, 560569.CrossRefGoogle ScholarPubMed
Béguin, P & Aubert, J.-P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews 13, 2558.CrossRefGoogle ScholarPubMed
Bisaria, V. S. & Ghose, T. K. (1981). Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzymes Microbiology and Technology 3, 90104.CrossRefGoogle Scholar
Black, G. W., Hazlewood, G. P., Xue, G.-P., Orpin, C. G. & Gilbert, H. J. (1994). Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of an octapeptide. Journal of Biochemistry 299, 560569.CrossRefGoogle ScholarPubMed
Borneman, W. S. & Akin, D. E. (1990). Lignocellulose degradation by rumen fungi and bacteria: Ultrastructure and cell wall degrading enzymes. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 325340 [Akin, D. E., Ljungdahl, L. G., Wilson, J. R. and Harris, P. J., editors]. New York: Elsevier Publishing Co. Inc.Google Scholar
Borneman, W. S., Ljungdahl, L. G., Hartley, R. D. & Akin, D. E. (1991). Isolation and characterization of p-coumaroyl esterase from the anaerobic Neocallimastix strain MC-2. Applied Environmental Microbiology 57, 23372344.CrossRefGoogle ScholarPubMed
Borneman, W. S., Ljungdahl, L. G., Hartley, R. D. & Akin, D. E. (1992). Purification and partial characterisation of 2 feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Applied Environmental Microbiology 58, 37623766.CrossRefGoogle ScholarPubMed
Brul, S & Stumm, C. K. (1994). Symbionts and organelles in anaerobic protozoa and fungi. Tree 9, 319324.Google ScholarPubMed
Chesson, A. (1988). Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Animal Feed Science and Technology 21, 219228.CrossRefGoogle Scholar
Chesson, A. & Forsberg, C. W. (1988). Polysaccharide degradation by rumen microorganisms. In The Rumen Microbial Ecosystem, pp. 251284 [Hobson, P. H., editor]. New York: Elsevier Applied Sciences.Google Scholar
Choct, M & Annison, G. (1992). The inhibition of nutrient digestion by wheat pentosans. British Journal of Nutrition 67, 123132.CrossRefGoogle ScholarPubMed
Christensen, L. (1995). Phytase Novo cuts phosphorus in manure by 30%. BioTimes, vol. 3, pp. 89. Bagsvaerd, Denmark: Novo Nordisk.Google Scholar
Coughlan, M. P. & Hazlewood, G. P. (1993). β-1, 4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnology and Applied Biochemistry 17, 259289.CrossRefGoogle ScholarPubMed
Davies, D. R., Theodorou, M. K., Lawrence, M. I. & Trinci, A. P. J. (1993). Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. Journal of General Microbiology 139, 13951400.CrossRefGoogle ScholarPubMed
Dehority, B. A. & Varga, G. A. (1991). Bacterial and fungal numbers in ruminal and caecal contents of the Blue Duiker (Cephalus monticola). Applied Environmental Microbiology 57, 469472.CrossRefGoogle Scholar
Fanutti, C., Ponyi, T., Black, G. W., Hazlewood, G. P. & Gilbert, H. J. (1995). The conserved non-catalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. Journal of Siological Chemistry 270, 2931429322.Google Scholar
Foster, J. W. (1949). Chemical Activities of the Fungi. New York: Academic Press.Google Scholar
France, J., Theodorou, M. K. & Davies, D. (1990). The use of zoospore concentrations and life cycle parameters in determining the population of anaerobic fungi in the rumen ecosystem. Journal of Theoretical Biology 147, 413422.CrossRefGoogle ScholarPubMed
Gilbert, H. J., Hazlewood, G. P., Laurie, J. I., Orpin, C. G. & Xue, G. P. (1992). Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Molecular Microbiology 6, 20652072.CrossRefGoogle Scholar
Grenet, E & Barry, P. (1988). Colonization of thick-walled plant tissues by anaerobic fungi. Animal Feed Science and Technology 19, 2531.CrossRefGoogle Scholar
Ho, Y. W., Abdullah, N & Jalaludin, S. (1988). Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. Journal of General Microbiology 134, 177181.Google Scholar
Ho, Y. W., Abdullah, N & Jalaludin, S. (1991). Fungal colonization of rice straw and palm press fibre in the rumen of cattle and buffalo. Animal Feed Science and Technology 34, 311321.CrossRefGoogle Scholar
Kemp, P., Lander, D. J. & Orpin, C. G. (1984). The lipids of the rumen fungus Piromonas communis. Journal of General Microbiology 130, 2737.Google ScholarPubMed
Kivaisi, A. K., Op den Camp, H. J. M., Lubberding, H. J., Boon, J. J. & Vogels, G. D. (1990). Generation of soluble lignin-derived compounds during degradation of barley straw in an artificial rumen reactor. Applied Microbiology and Biotechnology 33, 9398.CrossRefGoogle Scholar
Liebetanz, E. (1910). Die parasitischen Protozoen des Wiederkauermayens (The parasitic protozoa of ruminant stomachs). Archives Protistenkunde 19, 1980.Google Scholar
Ljungdahl, L. G. & Erickson, K. E. (1984). Ecology of microbial cellulose degradation. Advances in Microbial Ecology 8, 237299.CrossRefGoogle Scholar
Lowe, S. E., Griffith, G. G., Milne, A., Theodorou, M. K. & Trinci, A. P. J. (1987 a). Life cycle and growth kinetics of an anaerobic rumen fungus. Journal of General Microbiology 133, 18151827.Google Scholar
Lowe, S. E., Theodorou, M. K. & Trinci, A. P. J. (1987 b). Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Applied Environmental Microbiology 53, 12101215.CrossRefGoogle ScholarPubMed
Milne, A,Theodorou, M. K., Jordan, M. G. C., King-Spooner, C & Trinci, A. P. J. (1989). Survival of naerobic fungi in faeces, in saliva, and in pure culture. Experimental Mycology 13, 2737.CrossRefGoogle Scholar
Mitchell, D. J., Grohmann, K & Himmel, M. E. (1990). Effect of the degree of acetylated xylans. Journal of Wood Chemistry and Technology 10, 111121.CrossRefGoogle Scholar
Munn, E. A. (1994). The ultrastructure of anaerobic fungi. In The Anaerobic Fungi, pp. 47105 [Orpin, C. G. and Mountfort, D. O., editors]. New York: Marcel Dekker.Google Scholar
Nielsen, B. B., Zhu, W.-Y., Trinci, A. P. J & Theodorou, M. K. (1995). Demonstration of zoosporangia of anaerobic fungi on plant residues recovered from faeces of cattle. Mycological Reseurch 99, 471474.CrossRefGoogle Scholar
O'Fallon, J. V., Wright, R. W. & Calza, R. E. (1991). Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB 188. Biochemical Journal 274, 595599.CrossRefGoogle Scholar
Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91, 249262.CrossRefGoogle ScholarPubMed
Orpin, C. G. (19831984). The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Animal Feed Science and Technology 10, 121–143.Google Scholar
Orpin, C. G. & Bountiff, L. (1978). Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. Journal of General Microbiology 104, 113122.CrossRefGoogle Scholar
Orpin, C. G. & Greenwood, Y. (1986). The role of haems and related compounds in the nutrition and zoosporogenesis of the rumen chytridiomycete Neocallimastix frontalis H 8. Journal of General Microbiology 132, 21792185.Google Scholar
Orpin, C. G. & Letcher, A. J. (1979). Utilization of cellulose, starch, xylan and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Current Microbiology 3, 121124.CrossRefGoogle Scholar
Pearce, P. D. & Bauchop, T. (1985). Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Applied Environmental Microbiology 49, 12651269.CrossRefGoogle ScholarPubMed
Persson, I., Tjerneld, F & Hahn-Hägerdal, B. (1991). Fungal cellulolytic enzyme production: a review. Processes in Biochemistry 26, 6574.CrossRefGoogle Scholar
Pettersson, D & Åman, P. (1989). Enzyme supplementation of a poultry diet containing rye and wheat. British Journal of Nutrition 62, 139149.CrossRefGoogle ScholarPubMed
Phillips, M. W. & Gordon, G. L. R. (1988). Sugar and polysaccharide fermentation by anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21, 377383.CrossRefGoogle ScholarPubMed
Roger, V., Grenet, E., Jamot, J., Bernalier, A., Fonty, G & Gouet, P. (1992). Degradation of maize stem by two rumen fungal species, Piromyces comrnunis and Caecomyces comrnunis, in pure cultures or in association with cellulolytic bacteria. Reproduction Nutrition Dtveloppement 32, 321329.CrossRefGoogle ScholarPubMed
Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E & Rolando, C. (1985). Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24, 13591362.CrossRefGoogle Scholar
Teunissen, M. J., Op den Camp, H. J. M., Orpin, C. G., Huis, J. H. J & Vogels, G. D. (1991). Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non—ruminant herbivores during cultivation in a novel defined medium. Journal of General Microbiology 137, 14011408.CrossRefGoogle Scholar
Theander, O. (1989). Plant cell walls – Their chemical properties and rumen degradation. In The Roles of Protozoa and Fungi in Ruminant Degradation, OECD/UNE International Seminar, pp. 112 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, NSW: Penambul Books.Google Scholar
Theodorou, M. K., Longland, A. C., Dhanoa, M. S., Lowe, S. E. & Trinci, A. P. J. (1989). Growth of Neocallirnastix sp strain RI: on Italian ryegrass hay: removal of neutral sugars from plant cell walls. Applied Environmental Microbiology 55, 13631367.CrossRefGoogle Scholar
Theodorou, M. K., Lowe, S. E. & Trinci, A. P. J. (1988). The fermentative characteristics of anaerobic fungi. Biosystems 21, 371376.CrossRefGoogle Scholar
Theodorou, M. K., Merry, R. J. & Thomas, H. (1996 a). Is proteolysis in the rumen of grazing animals mediated by plant enzymes? (letter). British Journal of Nutrition 75, 507.CrossRefGoogle Scholar
Theodorou, M. K., Zhu, W.-Y., RickersA, A,, Nielsen, B. B., Gull, K. & Trinci, A. P. J. (1996 b). In The Mycota, vol. 6, Human and Animal Relationships.Berlin and Heidelberg: Springer-Verlag.Google Scholar
Van soest, P. J. (1982). Nutritional Ecology of the Ruminant. Corvallis, OR: Durham & Downey. Inc.Google Scholar
Wallace, R. J. & Joblin, N. J. (1985). Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiology Letters 29, 925.CrossRefGoogle Scholar
Warner, A. C. S. (1966). Diurnal changes in the concentration of microorganisms in the rumen of sheep fed limited diets once daily. Journal of General Microbiology 45, 213235.CrossRefGoogle ScholarPubMed
Williams, A. G. & Orpin, C. G. (1987). Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Canadian Journal of Microbiology 33, 418426.CrossRefGoogle ScholarPubMed
Wilson, C. A. & Wood, T. M. (1992). The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology 37, 125129.CrossRefGoogle Scholar
Wong, K. K. Y. & Saddler, J. N. (1993). Applications of hemicellulases in the food, feed and pulp industries. In Hemicellulose and Hemicellulases, Portland Press Research Monograph, pp. 127143 [Coughlan, M. P. and Hazlewood, G. P., editors]. London: Portland Press.Google Scholar
Wood, T. M. (1991). Fungal cellulases. In Biosynthesis and Biodegradation of Cellulose, pp. 499533 [Haigler, C. H. and Weimer, P. J., editors]. New York:Marcel Dekker Inc.Google Scholar
Wood, T. M. & Garcia-Campayo, V. (1990). Enzymology of cellulose degradation. Biodegradation 1 147161.CrossRefGoogle Scholar
Wood, T. M., Wilson, C. A., McCrae, S. I. & Joblin, K. N. (1986). A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters 34, 3740.CrossRefGoogle Scholar
Xue, G. P., Gobius, K. S. & Orpin, C. G. (1992). A novel polysaccharide hydrolase cDNA (cedD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. Journal of General Micrubiology 138, 23972403.CrossRefGoogle Scholar
Yarlett, N., Orpin, C. G., Munn, E. A., Yarlett, N. C. & Greenwood, C. A. (1986). Hydrogenosomes in the rumen fungus Neacallimastix pairiciarum. Journal of Biochemistry 236, 729739.CrossRefGoogle Scholar
Zhou, L., Xue, G.-P., Orpin, C. G., Black, G. W., Gilbert, H. J. & Hazlewood, G. P. (1994). Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Journal of Biochemistry 297, 359364.CrossRefGoogle Scholar
Zimmerman, W & Broda, P. (1989). Utilization of lignocellulose from barley straw by actinomycetes. Applied Microbiology and Biotechnology 30, 103110.CrossRefGoogle Scholar