Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T19:52:52.297Z Has data issue: false hasContentIssue false

Effects of diet on lipolysis and its regulation

Published online by Cambridge University Press:  28 February 2007

Richard G. Vernon
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The manipulation of adiposity’
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Aitchison, R. E. D., Clegg, R. A. & Vernon, R. G. (1982). Lipolysis in rat adipocytes during pregnancy and lactation. Biochemical Journal 202, 243247.CrossRefGoogle ScholarPubMed
Andrews, J., Kashiwagi, A., Verso, M. A., Vasquez, B., Howard, B. V. & Foley, J. E. (1984). Effects of four-day fast on triglyceride mobilization in human adipocytes. International Journal of Obesity 8, 355363.Google ScholarPubMed
Arner, P., Engfeldt, P. & Nowak, J. (1981 a). In vivo observations on the lipolytic effect of noradrenaline during therapeutic fasting. Journal of Clinical Endocrinology and Metabolism 53, 12071212.CrossRefGoogle ScholarPubMed
Arner, P., Engfeldt, P. & Ostman, J. (1979). Relationship between lipolysis, cyclic AMP, and fat-cell size in human adipose tissue during fasting and in diabetes mellitus. Metabolism 28, 198209.CrossRefGoogle ScholarPubMed
Arner, P., Engfeldt, P., Wennlund, A. & Ostman, J. (1981 b). Post receptor activation of lipolysis in starvation, diabetes mellitus and hyperthyroidism. Hormone and Metabolism Research 13, 272276.CrossRefGoogle ScholarPubMed
Awad, A. B. & Chattopadhyay, J. P. (1986). Effect of dietary saturated fatty acids on hormone-sensitive lipolysis in rat adipocytes. Journal of Nutrition 116, 10881094.CrossRefGoogle ScholarPubMed
Awad, A. B. & Zepp, E. A. (1979). Alteration of rat adipose tissue lipolytic response to norepinephrine by dietary fatty acid manipulation. Biochemical and Biophysical Research Communications 86, 138144.CrossRefGoogle ScholarPubMed
Barrand, M. A. & Callingham, B. A. (1983). The catecholamines: adrenaline, noradrenaline and dopamine. In Hormones in Blood, vol. 5, 3rd ed., pp. 55123 [Gray, C. H. and James, V. H. T., editors]. London: Academic Press.Google Scholar
Bray, G. A. & Nishizawa, Y. (1978). Ventromedial hypothalamus modulates fat mobilization during fasting. Nature 274, 900901.CrossRefGoogle ScholarPubMed
Brooks, B. J., Arch, J. R. S. & Newsholme, E. A. (1983). Effect of some hormones on the rate of the triacylglyceroVfatty-acid substrate cycle in adipose tissue of the mouse in vivo. Bioscience Reports 3, 263267.CrossRefGoogle ScholarPubMed
Carpene, C., Galitzky, J., Saulnier-Blache, J.-S. & Lafontan, M. (1990). Selective reduction of α2-adrenereic. I iesponsiveness in hamster adipose tissue during prolonged starvation. American Journal of Physiology 259, E80E88.Google ScholarPubMed
Carreau, J. P., Loriette, C., Counis, R. & Ketevi, P. (1972). Demasquage des recepteurs de la noradrenaline par enrichissement en acide linoleique des phospholipides membranaires de la cellule adipeuse (Relative non-masking of noradrenaline receptors by linoleic acid-rich phospholipids in fat cell membranes). Biochimica et Biophysica Acta 280, 440443.CrossRefGoogle Scholar
Chohan, P., Carpenter, C. & Saggerson, E. D. (1984). Changes in the anti-lipolytic action and binding to plasma membranes of N6-L-phenylisopropyladenosine in adipocytes from starved and hypothyroid rats. Biochemical Journal 223, 5359.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Cheema, S., Field, C. J., Garg, M. L., Venkatraman, J. & Clandinin, T. R. (1991). Dietary fat: exogenous determination of membrane structure and cell function. FASEB Journal 5, 27612769.CrossRefGoogle ScholarPubMed
Coppack, S. W., Fisher, R. M., Gibbons, G. F., Humphreys, S. M., McDonough, M. J., Potts, J. L. & Frayn, K. N. (1990). Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clinical Science 79, 339348.CrossRefGoogle ScholarPubMed
Correze, C. & Thibout, H. (1985). Effects of thyroidectomy, insulin, and phospholipids on cyclic AMP phosphodiesterase in rat adipocyte plasma membranes. Journal of Cyclic Nucleotide and Protein Phosphorylation Research 10, 167178.Google ScholarPubMed
Dax, E. M., Partilla, J. S. & Gregerman, R. I. (1981). Increased sensitivity of epinephrine stimulated lipolysis during starvation: tighter coupling of the adenylate cyclase complex. Biochemical and Biophysical Research Communications 101, 11861192.CrossRefGoogle ScholarPubMed
Degerman, E., Smith, C. J., Tornqvist, H., Vasta, V., Belfrage, P. & Manganiello, V. C. (1990). Evidence that insulin and isoprenaline activate the cGMP-inhibited low-K, CAMP phosphodiesterase in rat fat cells by phosphorylation. Proceedings of the National Academy of Science, USA 87, 533537.CrossRefGoogle Scholar
De Mazancourt, P., Lacasa, D., Giot, J. & Giudicelli, Y. (1989). Role of adenosine 3′,5′ -monophosphate and the R1-receptor G1-coupled adenylate cyclase inhibitory pathway in the mechanism whereby adrenalectomy increases the adenosine antilipolytic effect in rat fat cells. Endocrinology 124, 11311139.CrossRefGoogle Scholar
Engfeldt, P., Arner, P., Bolinder, J., Wennlund, A. & Ostman, J. (1982). Phosphodiesterase activity in human subcutaneous adipose tissue in hyper- and hypothyroidism. Journal of Clinical Endocrinology and Metabolism 54, 625629.CrossRefGoogle ScholarPubMed
Franke, W. W., Hergt, M. & Grund, C. (1987). Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of intermediate filament cage around lipid droplets. Cell 49, 131141.CrossRefGoogle Scholar
Fredholm, B. B., Birgitta, L. & Person, B. (1973). Effects of fasting on adipose tissue perfused in situ in young dogs. Scandinavian Journal of Clinical Laboratory Investigations 31, 7986.CrossRefGoogle ScholarPubMed
Garton, A. J., Campbell, D. G., Carling, D., Hardie, D. G., Colbran, R. J. & Yeaman, S. J. (1989). Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. European Journal of Biochemistry 179, 249254.CrossRefGoogle ScholarPubMed
Giudicelli, Y., Lacasa, D. & Agli, B. (1982). Alterations induced by a prolonged fasting: opposite effects on the P-adrenergic receptor-coupled adenylate-cyclase system and on lipolysis in fat cells from rat. European Journal Biochemistry 121, 301308.CrossRefGoogle Scholar
Giudicelli, Y., Lacasa, D., De Mazancourt, P., Pasquier, Y. N. & Pecquery, R. (1989). Steroid hormones and lipolysis regulation. In Obesity in Europe 88, pp. 185194 [P., Bjorntorp and S., Rossner, editors]. London: John Libbey.Google Scholar
Gorman, R. R., Tepperman, H. M. & Tepperman, J. (1972). Effects of starvation, refeeding, and fat feeding on adipocyte ghost adenyl cyclase activity. Journal of Lipid Research 13, 276280.CrossRefGoogle ScholarPubMed
Gorman, R. R., Tepperman, H. M. & Tepperman, J. (1973). Epinephrine binding and the selective restoration of adenylate cyclase activity in fat-fed rats. Journal of Lipid Research 14, 279285.CrossRefGoogle ScholarPubMed
Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J. & Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. Journal of Biological Chemistry 266, 1134111346.CrossRefGoogle Scholar
Hales, C. N., Luzio, J. P. & Siddle, K. (1978). Hormonal control of adipose tissue lipolysis. Biochemical Society Symposia 43, 97135.Google Scholar
Hardie, D. G. (1989). Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carbox:ylase. Progress in Lipid Research 28, 117146.CrossRefGoogle Scholar
Jensen, M. D., Haymond, M. W., Gerich, J. E., Cryer, P. E. & Miles, J. M. (1987). Lipolysis during fasting: decreased suppression by insulin and increased stimulation by epinephrine. Journal of Clinical Investigation 79, 207213.CrossRefGoogle ScholarPubMed
Jung, R. T., Shetty, P. S., Barrand, M., Callingham, B. A. & James, P. T. (1979). The role of catecholamines and thyroid hormones in the metabolic response to semistarvation. Proceedings of the Nutrition Society 38, 17A.Google ScholarPubMed
Kather, H., Wieland, E., Fisher, B. & Schlierf, G. (1985). Antilipolytic effects of N6-pheriylisopropyladenosine and prostaglandin Ez in fat-cells of obese volunteers before and during energy restriction. Biochemical Journal 231, 531535.CrossRefGoogle Scholar
Kather, H., Wieland, E., Scheurer, A., Vogel, G., Wildenberg, U. & Joost, C. (1987). Influences of variation in total energy intake and dietary composition on regulation of fat cell lipolysis in ideal-weight subjects. Journal of Clinical Investigation 80, 566572.CrossRefGoogle ScholarPubMed
Klein, S., Holland, O. B. & Wolfe, R. R. (1990). Importance of blood glucose concentration in regulating lipolysis during fasting in humans. American Journal of Physiology 21, E32E39.Google Scholar
Klein, S., Peters, E. J., Holland, O. B. & Wolfe, R. R. (1989). Effect of short- and long-term P-adrenergic blockade on lipolysis during fasting in humans. American Journal of Physiology 20, E65E73.CrossRefGoogle Scholar
Kozlowski, S., Kowalik-Borowka, E., Nazar, K., Falecka-Wieczorek, I., Stephens, D. & Kaciuba-Uscilko, H. (1985). Effect of beta-adrenergic blockade on lipid mobilization induced by fasting in dogs. Hormone and Metabolic Research 17, 811.CrossRefGoogle ScholarPubMed
Lacasa, D., Agli, B. & Giudicelli, Y. (1986 a). Increased sensitivity of fat cell adenylate cyclase to stimulatory agonists during fasting is not related to impaired inhibitory coupling system. FEBS Letters 202, 260266.CrossRefGoogle Scholar
Lacasa, D., Agli, B. & Giudicelli, Y. (1986 b). Fasting increases fat cell adenylate cyclase sensitivity to stimulatory agonists through enhanced ability of the stimulatory regulatory component N, to dissociate. Biochemical and Biophysical Research Communications 138, 14111419.CrossRefGoogle Scholar
Lacasa, D., Agli, B., Pecquery, R. & Giudicelli, Y. (1991). Influence of ovariectomy and regional fat distribution on the membranous transducing system controlling lipolysis in rat fat cells. Endocrinology 128, 747753.CrossRefGoogle ScholarPubMed
Landsberg, L. & Young, J. B. (1985). The influence of diet on the sympathetic nervous system. In Neuroendocrine Perspectives, vol. 4, pp. 191218 [Muller, E. E., MacLeod, R. M. and Frohman, L. A., editors]. London: Elsevier Science Publishers.Google Scholar
Lonnroth, P., Jansson, P.-A., Fredholm, B. B. & Smith, U. (1989). Microdialysis of intercellular adenosine concentration in subcutaneous tissue in humans. American Journal of Physiology 256, E250E255.Google ScholarPubMed
Malbon, C. C., Rapiejko, P. J. & Watkins, D. C. (1988). Permissive hormone regulation of hormone-sensitive effector systems. Trends in Pharmacological Sciences 9, 3336.CrossRefGoogle ScholarPubMed
Milligan, G. & Saggerson, E. D. (1990). Concurrent up-regulation of guanine-nucleotide-binding proteins Gila, Gi2a and Gi3a in adipocytes of hypothyroid rats. Biochemical Journal 270, 765769.CrossRefGoogle Scholar
Mizunuma, T., Takahashi, Y. & Kishino, Y. (1981). Morphological studies on isolated rat adipocytes. I. Effect of starvation. Acta Histochemistry and Cytochemistry 14, 101108.CrossRefGoogle Scholar
Murphy, M. G. (1990). Dietary fatty acids and membrane protein function. Journal of Nutrihn and Biochemistry 1, 6879.CrossRefGoogle ScholarPubMed
Nicolas, C., Demarne, Y., Lecourtier, M.-J. & Lhuillery, C. (1990). Specific alterations in different, adipose tissues of pig adipocyte plasma membrane structure by dietary lipids. International Journal of Obesity 14, 537549.Google ScholarPubMed
Ninomiya, H., Morimoto, C., Tsujita, T., Sumida, M. & Okuda, H. (1990). Biomodulator-m.ediated susceptibility of endogenous lipid droplets from rat adipocytes to hormone-sensitive lipase. Biochemical Medicine and Metabolic Biology 43, 112127.CrossRefGoogle ScholarPubMed
Oschry, Y. & Shapiro, B. (1980). Lipolytic activity in adipocyte cell fractions. Biochimica et Biophysiica Acta 618, 293299.CrossRefGoogle ScholarPubMed
Osegawa, M., Makino, H., Kanatsuka, A., Suzuki, T., Hashimoto, N. & Yoshida, S. (1985). Modulation of insulin action by fasting: A study using a phosphodiesterase activation system in rat fat cells. Hormone and Metabolic Research 17, 633636.CrossRefGoogle Scholar
Pamsh, C. C., Pathy, D. A., Parkes, J. G. & Angel, A. (1991). Dietary fish oils modify adipocyte structure and function. Journal of Cellular Physiology 148, 493502.Google Scholar
Peters, R. (1988). Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by P-adrenergic receptors. FEBS Letters 234, 17.CrossRefGoogle Scholar
Peters, E. J., Klein, S. & Wolfe, R. R. (1991). Effect of short-term fasting on the lipolytic response to theophylline. American Journal of Physiology 261, E500E504.Google ScholarPubMed
Ros, M., Alonso, G. & Moreno, F. J. (1992). Effects of litter removal on the lipolytic response and the regulatory components of the adenylate cyclase in adipocytes isolated from lactating rats. Biochemical Journal 281, 333337.CrossRefGoogle ScholarPubMed
Ros, M., Northrup, J. K. & Malbon, C. C. (1989). Adipocyte G-proteins and adenylate cyclase. Biochemical Journal 257, 737744.CrossRefGoogle ScholarPubMed
Roth, N. S., Campbell, P. T., Caron, M. G., Lefkowitz, R. J. & Lohse, M. J. (1991). Comparative rates of desensitization of P-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proceedings of the National Academy of Science, USA 88, 62016204.CrossRefGoogle Scholar
Saggerson, E. D. (1980). Increased antilipolytic effect of the adenosine ‘R-site’ agonist N6-(phenylisopropyl) adenosine in adipocytes from adrenalectomised rats. FEBS Letters 115, 127128.CrossRefGoogle Scholar
Saggerson, E. D. (1986). Sensitivity of adipocyte lipolysis to stimulatory and inhibitory agonists in hypothyroidism and starvation. Biochemical Journal 238, 387394.CrossRefGoogle ScholarPubMed
Saggerson, E. D. (1989). Alterations in the regulation of lipolysis in brown and white adipose tissue in the diabetic state. Biochemical Society Transactions 17, 4748.CrossRefGoogle Scholar
Sechen, S. J., Dunshea, F. R. & Bauman, D. E. (1990). Somatotropin in lactating cows: effect on response to epinephrine and insulin. American Journal of Physiology 258, E582E588.Google Scholar
Shetty, P. S. (1990). Physiological mechanisms in the adaptive response of metabolic rates to energy restriction. Nutrition Research Reviews 3, 4974.CrossRefGoogle ScholarPubMed
Slavin, B. G. (1972). The cytophysiology of mammalian adipose cells. International Reviews of Cytology 33, 297334.CrossRefGoogle ScholarPubMed
Smith, U., Kral, J. & Bjorntorp, P. (1974). Influence of dietary fat and carbohydrate on the metabolism of adipocytes of different size in the rat. Biochimica et Biophysica Acta 337, 278285.CrossRefGoogle Scholar
Stralfors, P. & Honnor, R. C. (1989). Insulin-induced dephosphorylation of hormone-sensitive lipase. European Journal of Biochemistry 182, 379385.CrossRefGoogle ScholarPubMed
Strassheim, D., Milligan, G. & Houslay, M. D. (1990). Diabetes abolishes the GTP-dependent, but not the receptor-dependent inhibitory function of the inhibitory guanine-nucleotide-binding regulatory protein (Gi) on adipocyte adenylate cyclase activity. Biochemical Journal 266, 521526.CrossRefGoogle Scholar
Sushi, C., Lavau, M. & Herzog, J. (1979). Adrenaline responsiveness of glucose metabolism in insulinresistant adipose tissue of rats fed a high-fat diet. Biochemical Journal 180, 431433.Google Scholar
Suzuki, M., Shimomura, Y. & Satoh, Y. (1983). Diurnal changes in lipolytic activity of isolated fat cells and their increased responsiveness to epinephrine and theophylline with meal feeding in rats. Journal of Nutritional, Science and Vitaminology 29, 399411.CrossRefGoogle ScholarPubMed
Tepperman, H. M., Dewitt, J. & Tepperman, J. (1986). Effect of a high fat diet on rat adipocyte lipolysis: Responses to epinephrine, forskolin, methylisobutylxanthine, dibutyryl cyclic AMP, insulin and nicotinic acid. Journal of Nutrition 116, 19841991.CrossRefGoogle ScholarPubMed
Trayhurn, P. & Wusteman, M. C. (1987). Sympathetic activity in brown adipose tissue during lactation in mice. Proceedings of the Nutrition Society 46, 27A.Google Scholar
Unger, R. H. (1972). Insulidglucagon ratio. Israeli Journal of Medical Science 8, 252257.Google ScholarPubMed
Unger, R. H. & Orci, L. (1976). Physiology and pathophysiology of glucagon. Physiological Reviews 56, 778826.CrossRefGoogle ScholarPubMed
Van der Tuig, J. G. & Romsos, D. R. (1984). Effects of dietary carbohydrate, fat, and protein on norepinephrine turnover in rats. Metabolism 33, 2633.CrossRefGoogle Scholar
Vernon, R. G. (1980). Lipid metabolism in the adipose tissue of ruminant animals. Progress in Lipid Research 19, 23106.CrossRefGoogle ScholarPubMed
Vernon, R. G. (1989). Endocrine control of metabolic adaptation during lactation. Proceedings of the Nutrition Society 48, 2332.CrossRefGoogle ScholarPubMed
Vernon, R. G. (1992). Control of lipogenesis and lipolysis. In The Control of Fat and Lean Deposition [Buttery, P. J., Boorman, K. N. and Lindsay, D. B., editors]. London: Butterworths (In the Press).Google Scholar
Vernon, R. G. & Clegg, R. A. (1985). The metabolism of white adipose tissue in vivo and in vitro. In New Perspectives in Adipose Tissue, pp. 6586 [A., Cryer and Van, R. L. R., editors[. London: ButtenvorthsCrossRefGoogle Scholar
Vernon, R. G. & Finley, E. (1986). Lipolysis in rat adipocytes during recovery from lactation. Biochemical Journal 234, 229231.CrossRefGoogle ScholarPubMed
Vernon, R. G., Finley, E. & Flint, D. J. (1987). Role of growth hormone in the adaptations of lipolysis in rat adipocytes during recovery from lactation. Biochemical Journal 242, 931934.CrossRefGoogle ScholarPubMed
Vernon, R. G. & Flint, D. J. (1984). Adipose tissue: metabolic adaptation during lactation. Symposium offhe Zoological Society of London 51, 119145.Google Scholar
Vernon, R. G. & Sasaki, S. (1991). Control of responsiveness of tissues to hormones. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 155182 [T., Tsuda, Y., Sasaki and R., Kawashima, editors]. London: Academic Press.CrossRefGoogle Scholar
Walgren, M. C., Young, J. B., Kaufman, L. N. & Landsberg, L. (1987). The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue of the rat. Metabolism 36, 585594.CrossRefGoogle ScholarPubMed
Watt, P. W., Finley, E., Cork, S., Clegg, R. A. & Vernon, R. G. (1991). Chronic control of the p- and crz-adrenergic systems of sheep adipose tissue by growth hormone and insulin. Biochemical Journal 273, 3942CrossRefGoogle Scholar
Watt, P. W., Madon, R. J., Flint, D. J. & Vernon, R. G. (1989). Effects of growth hormone on the f3-adrenergic receptor number of rat adipocyte membranes. Biochemical Society Transactions 18, 486.CrossRefGoogle Scholar
Wolfe, R. R., Peters, E. J., Klein, S., Holland, O. B., Rosenblatt, J. & Gray, H. (1987). Effect of sh0rt.tet-m fasting on lipolytic responsiveness in normal and obese human subjects. American Journal of Physiology 252, E189E196.Google ScholarPubMed
Young, J. B., Rosa, R. M. & Landsberg, L. (1984). Dissociation of sympathetic nervous system and adrenal medullary responses. American Journal of PhysioIogy 247, E35E40.Google ScholarPubMed
Xu, X., De Pergola, G. & Bjorntorp, P. (1991). Testosterone increases Lipolysis and the number of P-adrenoceptors in male rat adipocytes. Endocrinology 128, 379382.CrossRefGoogle ScholarPubMed
Zapf, J., Waldvogel, M. & Froesch, E. R. (1977). Increased sensitivity of rat adipose tissue to the lipolytic action of epinephrine during fasting and its reversal during refeeding. FEBS Letters 76, 135138.CrossRefGoogle Scholar
Zapf, J., Waldvogel, M. & Froesch, E. R. (1981). Is increased basal lipolysis in adipose tissue of fasted-refed rats related to cyclic-AMP-dependent mehanisms? European Journal of Biochemistry 119, 453459.CrossRefGoogle Scholar