Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T19:41:18.225Z Has data issue: false hasContentIssue false

Folate–vitamin B12 interrelationships in the central nervous system

Published online by Cambridge University Press:  28 February 2007

John M. Scott
Affiliation:
Department of Biochemistry, Trinity College, Dublin 2, Republic of Ireland
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Micronutrient transport processes’
Copyright
Copyright © The Nutrition Society 1992

References

Amess, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. J. & Mollin, D. L. (1978). Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet ii, 339342.CrossRefGoogle Scholar
Baldwin, G. S. & Carnegie, P. R. (1971). Specific enzymatic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science 171, 579581.CrossRefGoogle Scholar
Chanarin, I. (1990). The Megaloblastic Anaemias, 3rd ed. Oxford and London: Blackwell Scientific.Google Scholar
Chanarin, I., Deacon, R., Lumb, M. & Perry, J. (1980). Vitamin B12 regulates folate metabolism by the supply of formate. Lancet ii, 505507.CrossRefGoogle Scholar
Deacon, R., Lumb, M., Perry, J., Chanarin, J., Minty, B., Halsey, M. & Nunn, J. (1980). Inactivation of methionine synthase by nitrous oxide. European Journal of Biochemistry 104,419422.CrossRefGoogle ScholarPubMed
Dinn, J. J., Weir, D., McCann, S., Reed, B., Wilson, P. & Scott, J. M. (1980). Methyl group deficiency in nerve tissue: A hypothesis to explain the lesion of subacute combined degeneration. Irish Journal of Medical Science 149, 14.CrossRefGoogle ScholarPubMed
Erbe, R. W. (1986). Inborn errors of folate metabolism. Folatesand Pterins, vol. 3, pp. 413465 [Blakley, R. L. and Whitehead, V. M., editors]. New York: John Wiley and Sons.Google Scholar
Frenkel, R. P. (1973). Abnormal fatty acid metabolism: peripheral nerves of patients with pernicious anaemia. Journal of Clinical Investigation 52, 12371245.CrossRefGoogle Scholar
Herbert, V. & Zalushy, R. (1962). Interrelation of vitamin B12 and folk acid metabolism: Folic acid clearance studies. Journal of Clinical Investigation 41, 12631276.CrossRefGoogle Scholar
Hoffman, D. R., Marion, D. W., Cornatzer, W. E. & Duerre, J. A. (1980). S–adenosylmethionine and S-adenosylhomocysteine metabolism in isolated rat liver. Journal of Biological Chemistry 255, 822827.CrossRefGoogle ScholarPubMed
Keating, S., Weir, D. G. & Scott, J. M. (1983). Factors affecting folate polyglutamate biosynthesis in rat liver. In Chemistry and Biology of Pterdines, pp. 977981 [Blair, J. A., editor]. Berlin and New York: Walter de Gruyter.Google Scholar
Kutzbach, C. & Stokstad, E. L. R. (1967). Feedback inhibition of methylene-tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochemica et Biophysica Acta 139,217220.CrossRefGoogle ScholarPubMed
Lazer, R. N., Fishman, R. A. & Schaler, J. A. (1978). Neuropathy following abuse of nitrous oxide. Neurology 28,504506.CrossRefGoogle Scholar
Lumb, M., Sharer, N., Deacon, R., Jennings, P., Purkiss, P., Perry, J. & Chanarin, I. (1983). Effects of nitrous oxide induced inactivation of cobalamin on methionine and S-adenosylmethionine metabolism in the rat. Biochemica et Biophysica Acta 756, 354359.CrossRefGoogle ScholarPubMed
McGing, P., Reed, B., Weir, D. G. & Scott, J. M. (1978). The effect of vitamin B12 inhibition in vivo: Impaired folate polyglutamate biosynthesis indicating that 5–methyltetrahydropteroylglutamate is not its usual substrate. Biochemical and Biophysical Research Communications 82, 540546.CrossRefGoogle Scholar
McKeever, M. P., Weir, D. G., Molloy, A. & Scott, J. M. (1991). Betaine-homocysteine methyltransferase: Organ distribution in man, pig and rat and subcellular distribution in the rat. Clinical Sciences (In the Press).Google ScholarPubMed
Scott, J. M., Dim, J. J., Wilson, P. & Weir, D. G. (1981). Pathogenesis of subacute combined degeneration. A result of methyl group deficiency. Lancet ii, 334337.CrossRefGoogle Scholar
Scott, J. M., Reed, B., McKenna, B., McGing, P., McCann, S., O'Sullivan, H., Wilson, P. & Weir, D. G. (1979). A study of the multiple changes induced in vivo in experimental animals by inactivations of vitamin B12 using nitrous oxide. Chemistry and Biology of Pterdines. Developments in Biochemistry, vol. 4, pp. 335340 [Kislink, R. L. and Brown, G. M. editors]. Amsterdam: Elsevier North Holland.Google Scholar
Scott, J. M. & Weir, D. G. (1981). The methyl folate trap. A physiological response in man to prevent methyl group deficiency in kwashiorkor (methionine deficiency) and an explanation for folic acid-induced exacerbation of sub-acute combined degeneration. Lancet ii, 337340.CrossRefGoogle Scholar
Van der Westhuyzen, J. & Metz, J. (1983). Tissue S-adenosylmethionine levels in fruit bats Rousettus aegyptiacus with nitrous oxide-induced neuropathy. British Journal of Nutrition 50, 325330.CrossRefGoogle ScholarPubMed
Weir, D. G., Keating, S., Molloy, A., McPartlin, J., Kennedy, S., Blanchflower, J., Kennedy, D. G., Rice, D. & Scott, J. M. (1988). Methylation deficiency causes vitamin B12-associated neuropathy in the pig. Journal of Neurochemistry 51,19491952.CrossRefGoogle ScholarPubMed