Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T22:06:45.922Z Has data issue: false hasContentIssue false

Conjugacy classes in Sylow p-subgroups of GL(n,q), II*

Published online by Cambridge University Press:  14 November 2011

A. Vera-López
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, Bilbao, Spain
J. M. Arregi
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, Bilbao, Spain

Synopsis

In this paper, we find the canonical matrices of the conjugacy classes of the Sylow p-subgroup of GL(n, pt) consisting of all upper unitriangular matrices, whose cardinality is one of the two maximal possible values, that is, pt(n−1)(n−2)/2 and ptn(n−3)/2, as well as their number.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cartwright, M., Class and breadth of a finite p-group. Bull. London Math. Soc. 19 (1987), 425430.CrossRefGoogle Scholar
2Leedham-Green, C. R., Neumann, P. M. and Wiegold, J.. Breadth and the class of a finite p-group. J. London Math. Soc. (2) 1 (1969), 409420.CrossRefGoogle Scholar
3Macdonald, I. D.. The breadth of finite p-groups. Proc. Roy. Soc. Edinburgh Sect. A, 78 (1977), 3139.CrossRefGoogle Scholar
4Vaughan-Lee, M. R.. Breadth and commutator subgroups of p-groups. J. Algebra 32 (1974), 278285.CrossRefGoogle Scholar
5Vaughan-Lee, M. R. and Wiegold, J.. Breadth, Class and Commutator Subgroups of p-Groups. J. Algebra 32 (1974), 268277.CrossRefGoogle Scholar
6Vera-Lopez, A. and Arregi, J. M.. Classes de conjugaison dans les p-sous-groupes de Sylow de GL(n, q). C. R. Acad. Sci. Paris Ser. I Math. 310 (1990), 8184.Google Scholar
7Vera-Lopez, A. and Arregi, J. M.. Conjugacy Classes in Sylow p-subgroups of GL(n, q). J. Algebra (to appear).Google Scholar
8Wiegold, J.. Groups with boundedly finite classes of conjugate elements. Proc. Roy. Soc. London Ser. A 238 (1956), 389401.Google Scholar