Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T12:13:33.133Z Has data issue: false hasContentIssue false

Lower bounds for normal structure coefficients

Published online by Cambridge University Press:  14 November 2011

T. Domínguez Benavides
Affiliation:
Departamento de Análisis Matemático Facultad de Matemáticas, Universidad de Sevilla, Apart. 1160, 41080 Sevilla, Spain
G. López Acedo
Affiliation:
Departamento de Análisis Matemático Facultad de Matemáticas, Universidad de Sevilla, Apart. 1160, 41080 Sevilla, Spain

Synopsis

Using some new expressions for the weakly convergent sequences coefficient WCS(X) the lower boundedness

is proved, where δ(-) is the (Clarkson) modulus of convexity. We also define a modulus of noncompact convexity concerning nearly uniformly convex spaces which is used to obtain another lower bound for WCS(X). The computation of this modulus in Ip-spaces shows that our second lower bound is the best possible in these spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Akhmerov, R. R., Kamenski, M. I., Potapov, A. S., Rodkina, A. E. and Sadovski, B. N.. Measures of noncompactness and condensing operators (Novosibirsk: “Nauka” Sibirsk. Otdel, 1986, in Russian).Google Scholar
2Amir, D.. On Jung's constant and related constants in normed linear spaces.Pacific J. Math. 118 (1985), 115.CrossRefGoogle Scholar
3Arias, J.. On r-separated sets in normed spaces. Proc. Amer. Math. Soc. 112 (1991) 10871094.Google Scholar
4Banas, J.. On modulus of noncompact convexity and its properties. Canad. Math. Bull. 30 (2) (1987), 186192.CrossRefGoogle Scholar
5Bynum, W. L.. Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427435.Google Scholar
6Casini, E. and Maluta, E.. Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. 9 (1985), 103108.Google Scholar
7Benavides, T. Domínguez. Set-contractions and ball-contractions in some classes of spaces. J. Math. Anal. Appl. 136 (1988), 131140.Google Scholar
8Benavides, T. Domínguez. Some properties of the set and ball measures of noncompactness and applications. J. London Math. Soc. (2) 34 (1986), 120128.Google Scholar
9Benavides, T. Domínguez. The normal structure coefficient of LP(Q). Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 299303.CrossRefGoogle Scholar
10Goebel, K. and Sekowski, T.. The modulus of noncompact convexity. Ann. Univ. Marie-Curie Sklodowska Sect. A 38 (3) (1984), 4148.Google Scholar
11Huff, R.. Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 4 (1980), 743749.Google Scholar
12Kirk, W.. A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 10041006.Google Scholar
13Lim, T. C.. On the normal structure and related coefficients. Pacific J. Math. 111 (1984), 357369.Google Scholar
14Maluta, E.. Uniformly normal structure coefficient and the bounded sequence cofficient. Proc. Amer. Math. Soc. 88 (1983), 262264.Google Scholar
15Prus, S., On Bynum's fixed point theorem. Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535545.Google Scholar