No CrossRef data available.
Article contents
On the Gegenbauer transformation
Published online by Cambridge University Press: 14 November 2011
Synopsis
The Gegenbauer transformation Gλk is defined for λ > −1/2, k = 0, 1, 2, …, by
where, if being the Gegenbauer polynomial of index λ and degree k, and L0k is the Tchebichef polynomial of degree k. The transformation is studied on the spaces Lµ, p denned by the norm
and its boundedness and range on these spaces is determined and inversion formulae are found.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 115 , Issue 1-2 , 1990 , pp. 151 - 166
- Copyright
- Copyright © Royal Society of Edinburgh 1990
References
1Deans, Stanley R.. Gegenbauer transforms via the Radon transform. Siam J. Math. Anal. 10 (1979), 577–585.Google Scholar
2Erdélyi, A. et al. Higher transcendental functions I & II (New York: McGraw-Hill, 1953).Google Scholar
3Ludwig, Donald. The Radon transform on Euclidean space. Comm. Pure Appl. Math. 19 (1966), 49–81.CrossRefGoogle Scholar
4Rooney, P. G.. On the ranges of certain fractional integrals. Canad. J. Math. 24 (1972), 1198–1216.CrossRefGoogle Scholar
5Rooney, P. G.. Multipliers for the Mellin Transformation. Canad. Math. Bull. 24 (1982), 257–262.CrossRefGoogle Scholar
6Rooney, P. G.. On integral transformations with G-function kernels. Proc. Roy. Soc. Edin. Sect. A 93 (1983), 265–297.Google Scholar