Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-03T16:26:16.759Z Has data issue: false hasContentIssue false

On the vibrations of a square membrane

Published online by Cambridge University Press:  14 November 2011

V. Komornik
Affiliation:
Mathematical Institute, Eötvös Loránd University, Múzeum krt. 6-8, Budapest, H-1088, Hungary

Synopsis

We establish that if Ω is an open square and if P is an arbitrary point of Ω, then the solutions of the wave equation with Dirichlet boundary condition utt − Δu = 0 in R × Ω, u = 0 on R × Γ can remain strictly positive during an arbitrarily large time. In fact stronger results are proved, considering several points of Ω simultaneously and prescribing different, more general, behaviour of the solution at these points.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amerio, L. and Prouse, G.. Almost periodic functions and functional equations (New York: Van Nostrand, 1971).CrossRefGoogle Scholar
2Cazenave, T. and Haraux, A.. Propriétés oscillatoires des solutions de certains équations des ondes semi-linéaires. C.R. Acad. Sci. Paris, Sér. I Math. 298 (1984), 449452.Google Scholar
3Cazenave, T. and Haraux, A.. Sur la nature des oscillations libres associés à certaines équations des ondes semi-lineaires (to appear).Google Scholar
4Haraux, A.. Nonlinear evolution equations - Global behavior of solutions. Lecture Notes in Mathematics 841 (Berlin: Springer, 1981).Google Scholar
5Haraux, A. and Komornik, V.. Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985), 5777.CrossRefGoogle Scholar
6Haraux, A. and Komornik, V.. Oscillation in the wave equation. In Nonlinear partial differential equations and their applications, eds. Brézis, H. and Lions, J. L.. Collège de France seminar 19841985, Research Notes in Mathematics (London: Pitman, to appear).Google Scholar
7Komornik, V.. Nombres irrationels et l'équation des ondes. C.R. Acad. Sci. Paris Sér. I Math. 301 (1985), 471473.Google Scholar
8Komornik, V.. Density theorems for almost periodic functions. A Hilbert space approach. J. Math. Anal. Appl. 122 (1987), 538554.CrossRefGoogle Scholar
9Komornik, V.. Density theorems for mean-periodic functions. A distributional approach (to appear).Google Scholar
10Meyer, Y.. Algebraic numbers and harmonic analysis (Amsterdam: North-Holland, 1972).Google Scholar