No CrossRef data available.
Article contents
Cardinal invariants of Haar null and Haar meager sets
Published online by Cambridge University Press: 27 October 2020
Abstract
A subset X of a Polish group G is Haar null if there exists a Borel probability measure μ and a Borel set B containing X such that μ(gBh) = 0 for every g, h ∈ G. A set X is Haar meager if there exists a compact metric space K, a continuous function f : K → G and a Borel set B containing X such that f−1(gBh) is meager in K for every g, h ∈ G. We calculate (in ZFC) the four cardinal invariants (add, cov, non, cof) of these two σ-ideals for the simplest non-locally compact Polish group, namely in the case $G = \mathbb {Z}^\omega$. In fact, most results work for separable Banach spaces as well, and many results work for Polish groups admitting a two-sided invariant metric. This answers a question of the first named author and Vidnyánszky.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 151 , Issue 5 , October 2021 , pp. 1568 - 1594
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- Copyright © The Author(s), 2020. Published by Cambridge University Press