Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T18:19:09.256Z Has data issue: false hasContentIssue false

Large deviation principles of 2D stochastic Navier–Stokes equations with Lévy noises

Published online by Cambridge University Press:  18 November 2021

Huaqiao Wang*
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China (wanghuaqiao@cqu.edu.cn)

Abstract

Taking the consideration of two-dimensional stochastic Navier–Stokes equations with multiplicative Lévy noises, where the noises intensities are related to the viscosity, a large deviation principle is established by using the weak convergence method skillfully, when the viscosity converges to 0. Due to the appearance of the jumps, it is difficult to close the energy estimates and obtain the desired convergence. Hence, one cannot simply use the weak convergence approach. To overcome the difficulty, one introduces special norms for new arguments and more careful analysis.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirdjanova, A. and Xiong, J.. Large deviation principle for a stochastic Navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 651666.Google Scholar
Adams, R. A. and Fournier, J. F., Sobolev spaces, Pure and Applied Mathematics Series, 2nd ed., Academic Press, 2003.Google Scholar
Bardos, C.. Éxistence et unicité de la solution de l’équation d'Euler en dimensions deux. J. Math. Anal. Appl. 40 (1972), 769780.10.1016/0022-247X(72)90019-4CrossRefGoogle Scholar
Bardos, C. and Titi, E. S.. Euler equations for an ideal incompressible fluid. Russian Math. Surveys 62 (2007), 409451. (Russian) Uspekhi Mat Nauk, 3, 5–46.10.1070/RM2007v062n03ABEH004410CrossRefGoogle Scholar
Bessaih, H. and Flandoli, F.. 2-D Euler equations with non regular force. Nonlinear Differ. Equ. Appl. 6 (1999), 3554.CrossRefGoogle Scholar
Bessaih, H.. Martingale solutions for stochastic Euler equations. Stoc. Anal. Appl. 17 (1999), 713727.10.1080/07362999908809631CrossRefGoogle Scholar
Bessaih, H. and Millet, A.. Large deviation principle and inviscid shell models. Electronic J. Prob. 14 (2009), 20512579.CrossRefGoogle Scholar
Bessaih, H. and Millet, A.. Large deviations and the zero viscosity limit for 2D stochastic Navier-Stokes equations with free boundary. SIAM J. Math. Anal. 44 (2012), 18611893.10.1137/110827235CrossRefGoogle Scholar
Boue, M. and Dupuis, P.. A variational representiation for positive functionals of Brownian motion. Ann. Probab. 26 (1998), 16411659.10.1214/aop/1022855876CrossRefGoogle Scholar
Brzeźniak, Z.. Stochastic partial differential equations in $M$-type 2 Banach spaces. Potential Anal. 4 (1995), 145.CrossRefGoogle Scholar
Brzeźniak, Z., Liu, W. and Zhu, J. H.. Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal. Real. World Appl. 17 (2014), 283310.CrossRefGoogle Scholar
Brzeźniak, Z. and Peszat, S.. Stochastic two dimensional Euler equations. Ann. Probab. 29 (2001), 17961832.10.1214/aop/1015345773CrossRefGoogle Scholar
Budhiraja, A., Chen, J. and Dupuis, P.. Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stochastic Process. Appl. 123 (2013), 523560.CrossRefGoogle Scholar
Budhiraja, A. and Dupuis, P.. A variational representation for positive functionals of infinite dimensional Brownian motion. Prob. Math. Stat. 20 (2000), 3961.Google Scholar
Budhiraja, A., Dupuis, P. and Ganguly, A., Moderate deviation principle for stochastic differential equations with jump, arXiv:1401.73v1.Google Scholar
Budhiraja, A., Dupuis, P. and Maroulas, V.. Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36 (2008), 13901420.10.1214/07-AOP362CrossRefGoogle Scholar
Budhiraja, A., Dupuis, P. and Maroulas, V.. Variational representations for continuous time processes. Ann. Inst. Henri Poincaré B, Probab. Stat. 47 (2011), 725747.CrossRefGoogle Scholar
Capiński, M. and Cutland, N. J.. Stochastic Euler equations on the torus. Ann. Appl. Probab. 9 (1999), 688705.CrossRefGoogle Scholar
Capińsky, M. and Gatarek, D.. Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension. J. Funct. Anal. 126 (1994), 2635.10.1006/jfan.1994.1140CrossRefGoogle Scholar
Cerrai, S. and Röckner, M.. Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction terms. Ann. Probab. 32 (2004), 11001139.10.1214/aop/1079021473CrossRefGoogle Scholar
Chueshov, I. and Millet, A.. Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl. Math. Optim. 61 (2010), 379420.CrossRefGoogle Scholar
Chen, X.. The moderate deviations of independent random vectors in a Banach space. Chinese J. Appl. Probab. Statist. 7 (1991), 2433.Google Scholar
Da Prato, G. and Zabczyk, J.. Stochastic Equations in Infinite Dimensions (Cambridge University Press, Cambridge, 1992).CrossRefGoogle Scholar
De Acosta, A.. Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Amer. Math. Soc. 329 (1992), 357375.CrossRefGoogle Scholar
Dembo, A. and Zeitouni, O.. Large Deviations Techniques and Applications (Springer-Verlag, New York, 2000).Google Scholar
Dettweiler, E.. Stochastic integration relative to Brownian motion on a general Banach space. Doǧa Math. 15 (1991), 644.Google Scholar
Dong, Z., Xiong, J., Zhai, J. L. and Zhang, T. S.. moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. J. Funct. Anal. 272 (2017), 227254.10.1016/j.jfa.2016.10.012CrossRefGoogle Scholar
Duan, J. and Millet, A.. Large deviations for the Boussinesq equations under random influences. Stochastic Process. Appl. 119 (2009), 20522081.10.1016/j.spa.2008.10.004CrossRefGoogle Scholar
Flandoli, F. and Gatarek, D.. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102 (1995), 367391.CrossRefGoogle Scholar
Freidlin, M. I. and Wentzell, A. D., Random Perturbations of Dynamical Systems, volume 260 of Grundlehren der Mathematischen Wissenschaften (Springer-Verlag, New York, 1984). Translated from the Russian by Joseph Szücs.CrossRefGoogle Scholar
Guillin, A. and Liptser, R.. Examples of moderate deviation principle for diffusion processes. Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 803828.Google Scholar
Gourcy, M.. A large deviation principle for 2D stochastic Navier-Stokes equation. Appl. 117 (2007), 904927.Google Scholar
Jakubowski, A.. The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42 (1997), 167174. Teor. Veroyatnost. i Primenen 4, 209–216.CrossRefGoogle Scholar
Jakšić, V., Nersesyan, V., Pillet, C.-A. and Shirikyan, A.. Large deviations and mixing for dissipative PDEs with unbounded random kicks. Nonlinearity 31 (2018), 540596.10.1088/1361-6544/aa99a7CrossRefGoogle Scholar
Kato, T. and Ponce, G.. Well-posedeness of the Euler and Navier-Stokes equations in Lebesgue spaces $L^{p}_s({{\mathbb {R}}}^{n})$. Rev. Mat. Iberoamericana 2 (1986), 7388.CrossRefGoogle Scholar
Kuksin, S. B.. On the distribution of Energy and Vorticity for solutions of 2D Navier-Stokes Equation with Small Viscosity. Commun. Math. Phys. 284 (2008), 407424.CrossRefGoogle Scholar
Lions, J. L.. Équations Differentielles Opérationelles et Problèmes aux Limites (Springer-Verlag, Berlin, 1961).Google Scholar
Lions, J. L.. Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires (Dunod, Paris, 1970).Google Scholar
Ledoux, M.. Sur les deviations modérées des sommes de variables aléatoires vectorielles independantes de même loi. Ann. Henri Poincaré 28 (1992), 267280.Google Scholar
Liu, W.. Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61 (2010), 2756.10.1007/s00245-009-9072-2CrossRefGoogle Scholar
Manna, U., Sritharan, S. S. and Sundar, P.. Large deviations for the stochastic shell model of turbulence. Nonlinear Differ. Equ. Appl. 16 (2009), 493521.CrossRefGoogle Scholar
Menaldi, J. L. and Sritharan, S. S.. Stochastic 2-D Navier-Stokes equation. Appl. Math. Optim. 46 (2002), 3153.CrossRefGoogle Scholar
Neidhardt, A. L., Stochastic integrals in 2-uniformly smooth Banach spaces, Ph. D. dissertation, University of Wisconsin.Google Scholar
Ondrejat, M.. Uniqueness for stochastic evolution equations in Bancah spaces. Dissertationes Math. (Roaprawy Math.) 426 (2004), 6–3.Google Scholar
Peszat, S. and Zabczyk, J.. Stochastic partial differential equations with Lévy noise: An evolution equation approach. Cambridge University Press (Cambridge, 2007).CrossRefGoogle Scholar
Prevot, C. and Röckner, M., A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2007.Google Scholar
Ren, J. and Zhang, X.. Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations. J. Funct. Anal. 254 (2008), 31483172.10.1016/j.jfa.2008.02.010CrossRefGoogle Scholar
Röckner, M., Zhang, T. and Zhang, X.. Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim. 61 (2010), 267285.CrossRefGoogle Scholar
Röckner, M. and Zhang, T.. Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal. 26 (2007), 255279.10.1007/s11118-006-9035-zCrossRefGoogle Scholar
Sowers, R.. Large deviations for a reaction-diffusion equation with non-Gaussian perturbations. Ann. Probab. 20 (1992), 504537.CrossRefGoogle Scholar
Sritharan, S. S. and Sundar, P.. Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006), 16361659.CrossRefGoogle Scholar
Temam, R.. Navier-Stokes Equations: Theory and Numerical Analysis (Amsterdam. North-Holland, 1979).Google Scholar
Ventcel, A. D. and Freidlin, M. I.. Small random perturbations of dynamical systems. Uspehi. Mat. Nauk 25 (1970), 355.Google Scholar
Vishik, M. I., Komech, A. I. and Fursikov, A. V.. Some mathematical problems of statistical hydromechanics. Russ. Math. Surv. 34 (1979), 149234.CrossRefGoogle Scholar
Wu, L.. Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995), 420445.Google Scholar
Wang, R., Zhai, J. L. and Zhang, T.. A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J. Differ. Equ. 258 (2015), 33633390.10.1016/j.jde.2015.01.008CrossRefGoogle Scholar
Wang, R. and Zhang, T.. Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal. 42 (2015), 99113.CrossRefGoogle Scholar
Yudovich, V. L.. Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2 (1995), 2738.CrossRefGoogle Scholar
Xu, T. and Zhang, T.. Large deviation principles for 2-D stochastic Navier-Stokes equations driven by Lévy processes. J. Funct. Anal. 257 (2009), 15191545.CrossRefGoogle Scholar
Zhai, J. L. and Zhang, T.. Large deviations for 2-D stochastic Navier-Stokes equations with multiplicative Lévy noises. Bernoulli 21 (2015), 23512392.CrossRefGoogle Scholar
Ziane, M.. On the two-dimensional Navier-Stokes equations with the free boundary conditions. App. Math. Optim. 38 (1998), 119.10.1007/s002459900079CrossRefGoogle Scholar