Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T14:10:58.011Z Has data issue: false hasContentIssue false

On the effective elasticity of a two-dimensional homogenised incompressible elastic composite

Published online by Cambridge University Press:  14 November 2011

Robert Lipton
Affiliation:
Mathematical Sciences Institute, Caldwell Hall, Cornell University, Ithaca, NY 14853, U.S.A.

Synopsis

The set of effective elasticity tensors for all two-dimensional mixtures of two isotropic incompressible elastic materials taken in prescribed proportion is described. In two dimensions the effective tensors are completely characterised by bounds on their eigenvalues.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Avellaneda, M.. Optimal bounds and microgeometries for elastic composites. S1AM J Appl Math. 47 (1987), 12161228.Google Scholar
2Bensoussan, A., Lions, J. L. and Papanicolaou, G.. Asymptotic Analysis for Periodic Structures (Amsterdam: North-Holland, 1978).Google Scholar
3Francfort, G. A. and Murat, F.. Homogenisation and optimal bounds in linear elasticity. Arch. Rational Mech. Anal. 94 (1986), 307334.CrossRefGoogle Scholar
4Hashin, Z. and Shtrikman, S.. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11 (1963), 127140.CrossRefGoogle Scholar
5Kohn, R. V. and DalMaso, G.. The local character of G-closure (in prep.).Google Scholar
6Kohn, R. V. and Lipton, R.. Optimal bounds for the effective energy of a mixture of two isotropic, incompressible, elastic materials. Arch. Rational Mech. Anal, (to appear).Google Scholar
7Kohn, R. V. and Milton, G.. On bounding the effective conductivity of anisotropic composites. In Homogenisation and Effective Moduli of Material and Media, eds. Ericksen, J. et al. (Berlin: Springer, 1986).Google Scholar
8Lipton, R.. An optimal lower bound on the energy dissipation rate for homogenised Stokes flow (Ph.D. Thesis, New York University, 1986).Google Scholar
9Lurie, K. A. and Cherkaev, A. V.. Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 7187.CrossRefGoogle Scholar
10Lurie, K. A., Cherkaev, A. V. and Federov, A. V.. Regularisation of optimal design problems for bars and plates. J. Optim. Theory Appl. 37 (1982), 499522 and 523–543.CrossRefGoogle Scholar
11Lurie, K. A., Cherkaev, A. V. and Fedorov, A. V.. On the existence of solutions to some problems of optimal design for bars and plates. J. Optim. Theory Appl. 42 (1984), 247281.CrossRefGoogle Scholar
12Murat, F.. H-Convergence. Seminaire d'Analyse Fonctionnelle et Numerique (Algiers: Universite d'Alger, 1977–78).Google Scholar
13Murat, F. and Tartar, L.. Calcul des variations et homogénéisation. In Les Méthode de l'Homogénéisation Théorie et Applications en Physique. Collection de le Direction des Etudes et Recherches d'Electricité de France 57, eds Bergman, D. et al. , 319369 (Paris: Eyrolles, 1985).Google Scholar
14Nguetseng, G.. Etude asymptotique du comportment macroscopique d'un melange de deux fluides visqueux. J. Méc. Théor. Appl. 1 (1982), 957961.Google Scholar
15Paul, B.. Prediction of elastic constants of multiphase materials. Trans. AIME 218 (1960), 3641.Google Scholar
16Sanchez-Palencia, E.. Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics (Berlin: Springer, 1980).Google Scholar
17Simon, L.. On G-Convergence of elliptic operators. Indiana Univ. Math. J. 28 (1979), 587594.CrossRefGoogle Scholar
18Spagnolo, S.. Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche. Ann. Scuola Norm. Sup. Pisa 22 (1968), 577597.Google Scholar
19Spagnolo, S.. Convergence in energy for elliptic operators. Numerical Solution of Partial Differential Equations III, ed. Hubbard, B. (College Park: SYNSPADE, 1975).Google Scholar
20Tartar, L.. Cours Peccot (Paris: College de France, 1977).Google Scholar
21Tartar, L.. Estimations fines de coefficients homogénéisés. In Ennio DeGiorgi Colloquium, ed. Kreé, P., pp. 168187. Research Notes in Math. 125 (Boston: Pitman, 1985).Google Scholar
22Teman, R. and Ekeland, I.. Convex Analysis and Variational Problems (Amsterdam: North-Holland, 1976).Google Scholar
23Zhikov, V. V., Kozlov, S. M., Oleinik, O. A. and Nagoan, Kha Ten. Averaging and G-Convergence of differential operators. Russian Math. Surveys 34 (1979), 69147.CrossRefGoogle Scholar