Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T12:35:39.607Z Has data issue: false hasContentIssue false

Optimal inverse problems of potentials for two given eigenvalues of Sturm–Liouville problems

Published online by Cambridge University Press:  07 March 2024

Min Zhao
Affiliation:
Department of Mathematics, Shandong University at Weihai, Weihai 264209, P. R. China (zhaomin215@mail.sdu.edu.cn; qijiangang@sdu.edu.cn)
Jiangang Qi
Affiliation:
Department of Mathematics, Shandong University at Weihai, Weihai 264209, P. R. China (zhaomin215@mail.sdu.edu.cn; qijiangang@sdu.edu.cn)

Abstract

The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borg, G.. Eine umkehrung der Sturm–Liouvilleschen eigenwertaufgabe. Acta Math. 78 (1946), 196.CrossRefGoogle Scholar
Dunford, N. and Schwartz, T. J.. Linear operator (New York: Wiley, 1963).Google Scholar
Gesztesy, F. and Simon, B.. Inverse spectral analysis with partial information on the potential, I. The case of an a. c. component in the spectrum. Helv. Phys. Acta 70 (1997), 6671.Google Scholar
Gesztesy, F. and Simon, B.. Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans. Am. Math. Soc. 352 (2000), 27652787.CrossRefGoogle Scholar
Guo, H. and Qi, J.. Extremal norm of potentials for Sturm–Liouville eigenvalue problems with separated boundary conditions. Electron. J. Differ. Equ. 99 (2017), 111.Google Scholar
Guo, H. and Qi, J.. Sturm–Liouville problems involving distribution weights and an application to optimal problem. J. Optim. Theory Appl. 184 (2020), 842857.CrossRefGoogle Scholar
Hochstadt, H. and Lieberman, B.. An inverse Sturm–Liouville problem with mixed given data. SIAM J. Appl. Math. 34 (1978), 676680.CrossRefGoogle Scholar
Ilyasov, Y. and Valeev, N.. Recovery of the nearest potential field from the $m$ observed eigenvalues. Physica D 426 (2021), 132985.CrossRefGoogle Scholar
Kato, T.. Perturbation theory for linear operators (New York: Springer-Verlag, 1980).Google Scholar
Levinson, N.. The inverse Sturm–Liouville problems. Matematisk Tidsskrift. B (Scandinavia: Mathematica Scandinavica, 1949).Google Scholar
Marchenko, V. A.. Some problems in the theory of second-order differential operators. Dokl. Akad. Nauk. SSSR 72 (1950), 457460.Google Scholar
Meng, G. and Zhang, M.. Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differ. Equ. 254 (2013), 21962232.CrossRefGoogle Scholar
Pöschel, J. and Trubowitz, E.. The inverse spectral theory (New York: Academic Press, 1987).Google Scholar
Qi, J. and Chen, S.. Extremal norms of the potentials recovered from inverse Dirichlet problems. Inverse Probl. 32 (2016), 035007.CrossRefGoogle Scholar
Qi, J., Li, J. and Xie, B.. Extremal problems of the density for vibrating string equations with applications to gap and ratio of eigenvalues. Qual. Theor. Dyn. Syst. 19 (2020), 115.CrossRefGoogle Scholar
Qi, J. and Xie, B.. Extremum estimates of the $L^1$-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. DCDS(B) 22 (2017), 35053516.Google Scholar
Reed, M. and Simon, B.. Methods of modern mathematical physics (San Diego: Academic Press, Inc., 1978).Google Scholar
Sh. Ilyasov, Y. and Valeeva, N. F.. On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem. J. Differ. Equ. 266 (2019), 45334543.CrossRefGoogle Scholar
Valeev, N. F. and Ilyasov, Y. Sh.. Inverse spectral problem for Sturm Liouville operator with prescribed partial trace. Ufa Math. J. 12 (2020), 2030.CrossRefGoogle Scholar
Wei, Q., Meng, G. and Zhang, M.. Extremal values of eigenvalues of Sturm–Liouville operators with potentials in $L^1$ balls. J. Differ. Equ. 247 (2009), 364400.CrossRefGoogle Scholar
Wei, G. and Xu, H.. Inverse spectral problem for a string equation with partial information. Inverse Probl. 26 (2010), 115.CrossRefGoogle Scholar
Wei, G. and Xu, H.. Inverse spectral problem with partial information given on the potential and norming constants. Trans. Am. Math. Soc. 346 (2012), 32653288.CrossRefGoogle Scholar
Weidmann, J.. Spectral theory of ordinary differential operators (Berlin: Springer, 1987).CrossRefGoogle Scholar
Zettl, A.. Sturm–Liouville theory (USA: American Mathematical Society, 2005).Google Scholar
Zhang, M.. Extremal values of smallest eigenvalues of Hill's operators with potentials in $L^1$ balls. J. Differ. Equ. 246 (2009), 41884220.CrossRefGoogle Scholar
Zhang, M., Wen, Z., Gang, M., Qi, J. and Xie, B.. On the number and complete continuity of weighted eigenvalues of measure differential equations. Differ. Integr. Equ. 31 (2018), 761784.Google Scholar