Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T19:10:00.983Z Has data issue: false hasContentIssue false

The influence of ozone chemistry and meteorology on plant exposure to photo-oxidants

Published online by Cambridge University Press:  05 December 2011

J.N. Cape
Affiliation:
Institute of Terrestrial Ecology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH260QB, UK
R.I. Smith
Affiliation:
Institute of Terrestrial Ecology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH260QB, UK
D. Fowler
Affiliation:
Institute of Terrestrial Ecology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH260QB, UK
Get access

Synopsis

Concentrations of ozone have approximately doubled over the past century. In polluted air, photochemical reactions may produce concentrations of ozone up to 100 ppbv or more, even in areas relatively remote from sources of industrial pollution. The large ozone concentrations observed in these episodes, which may persist for several days, are markers for the presence of intense photochemical activity in the atmosphere. Experiments designed to investigate the effects of ozone on plants rarely, if ever, reproduce the chemical conditions which are always associated with ozone episodes.

Exposure of plants to ozone is strongly influenced by topography and meterological conditions. Windy sites which are well coupled to the atmosphere experience only a small diurnal variation in ozone concentration, and peak concentrations during episodes are generally much larger than at sheltered sites.

Stomatal opening effectively controls the amount and rate at which ozone enters leaves. Factors which affect stomatal opening therefore determine the dose of ozone for a given concentration in air. Extrapolation of results from controlled experiments to the field must assess whether growing conditions, including stomatal conductance, are comparable between experiment and field.

The Critical Levels approach has shown that crop plants and natural vegetation are likely to be exposed to potentially damaging ozone concentrations in most industrialised countries.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anfossi, D., Sandroni, S. & Viarengo, S. 1991. Tropospheric ozone in the nineteenth century: The Moncalieri series. Journal of Geophysical Research 96, 17349–52.CrossRefGoogle Scholar
Ashmore, M. R. 1993. Critical levels for ozone. In: UNECE Workshop on Critical Levels: Background papers. London, Department of the Environment, (in press).Google Scholar
Chameides, W. L. 1989. The chemistry of ozone deposition to plant leaves: role of ascorbic acid. Environmental Science and Technology 23, 595600.CrossRefGoogle Scholar
Dobson, M. C., Taylor, G. & Freer-Smith, P. H. 1990. The control of ozone uptake by Picea abies (L.) Karst. and P. sitchensis (Bong.) Carr. during drought and interacting effects on shoot water relations. New Phytologist 116, 465–74.CrossRefGoogle ScholarPubMed
Dollard, G. J., Jones, B. M. R. & Davies, T. J. 1990. Dry deposition of HNO3 and PAN. Harwell Report AERE-R13780. Didcot: Harwell Laboratory.Google Scholar
Durrant, D. W. H., Waddell, D. A., Benham, S. E. & Houston, T. J. 1992. Air quality and tree growth: results of the open-top chamber experiments 1991. Research Information Note 221. Farnham: Forestry Commission.Google Scholar
van der Eerden, L. G., Tonneijck, A. E. J. & Wijnands, J. H. 1988. Crop loss due to air pollution in the Netherlands. Environmental Pollution 53, 365–76.CrossRefGoogle ScholarPubMed
Enders, G. 1992. Deposition of ozone to a mature spruce forest: measurements and comparison to models. Environmental Pollution 75, 61–7.CrossRefGoogle ScholarPubMed
Faust, B. C. and Allen, J. M. 1992. Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular oxygen in clouds and fog. Journal of Geophysical Research 97, 12913–26.CrossRefGoogle Scholar
Feister, U. & Warmbt, W. 1987. Long-term measurements of surface ozone in the German Democratic Republic. Journal of Atmospheric Chemistry 5, 121.CrossRefGoogle Scholar
Fonrobert, E. 1916. Das Ozon. Stuttgart: Enke Verlag.Google Scholar
Fowler, D. 1986. The transfer of air pollutants to the ground by wet and dry deposition. In Sandroni, S. (Ed.) Regional and long-range transport of air pollution, pp. 95126. Amsterdam: Elsevier.Google Scholar
Fowler, D., Cape, J. N., Leith, I. D., Paterson, I. S., Kinnaird, J. W. & Nicholson, I. A. 1988. Effects of air filtration at small SO2 and NO2 concentrations on the yield of barley. Environmental Pollution 53, 135–49.CrossRefGoogle ScholarPubMed
Fowler, D., Smith, R. I. & Weston, K. J. 1994. Quantifying the spatial distribution of surface ozone exposure at the 1km × 1km scale. In Fuhrer, J. (Ed.) Critical levels for ozone, UNECE Workshop on Critical Levels (Nov. 1993). Liebefeld-Bern: Swiss Federal Research Station for Agricultural Chemistry and Environmental Hygiene.Google Scholar
Fuentes, J. D. & Gillespie, T. J. 1992. A gas exchange system to study the effects of leaf surface wetness on the deposition of ozone. Atmospheric Environment 26A, 1165–73.CrossRefGoogle Scholar
Garland, J. A. & Penkett, S. A. 1976. Absorption of peroxy acetyl nitrate and ozone by natural surfaces. Atmospheric Environment 10, 1127–31.CrossRefGoogle Scholar
Gay, M. J. 1991. Meteorological and altitudinal influences on the concentration of ozone at Great Dun Fell. Atmospheric Environment 25A, 1767–79.CrossRefGoogle Scholar
Gross, K. & Wagner, E. 1992. Methodische Probleme bei Begasungsexperimenten mit Ozon: Abhängigkeit des Gaswechsels und der Ozonaufnahme junger Fichten von der Lufttemperatur, der Ozonkonzentration und der Art der Ozonherstellung. Allgemeine Forst- und Jagd-Zeitung 163, 133–8.Google Scholar
Guderian, R. 1988. Critical levels for effects of ozone (O3). In: Final Draft Report of UNECE Critical Levels Workshop, Bad Harzburg. Geneva: UNECE.Google Scholar
Gunthardt-Goerg, M. S., Matyssek, R., Scheidegger, C. & Keller, T. 1993. Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees 7, 104–14.CrossRefGoogle Scholar
Heck, W. W., Taylor, O. C. & Tingey, D. T. 1988. Assessment of crop loss from air pollution. New York: Elsevier.CrossRefGoogle Scholar
Hewitt, C. N., Kok, G. L. & Fall, R. 1990. Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. Nature 344, 56–8.CrossRefGoogle ScholarPubMed
Hogsett, W. E., Tingey, D. T. and Lee, E. H. 1988. Ozone exposure indices: concepts for development and evaluation of their use. In Heck, W. W., Taylor, O. C. & Tingey, D. T. (Eds.) Assessment of crop loss from air pollutants, pp. 107–40. London: Elsevier.CrossRefGoogle Scholar
Hov, O., Eliassen, A. & Simpson, D. 1988. Calculation of the distribution of NOx compounds in Europe. In Isaksen, I. S. A. (Ed.) Tropospheric ozone: regional and global scale interactions, 239–61. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Junkermann, W., Platt, U. & Volz-Thomas, A. 1989. A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules. Journal of Atmospheric Chemistry 8, 203–27.CrossRefGoogle Scholar
Krause, C. R. & Cannon, W. N. Jr 1991. Epistomatal wax injury to red spruce needles (Picea rubens Sarg.) grown in elevated levels of ozone and acidified rain. Scanning Microscopy 5, 1173–80.Google Scholar
Logan, J. A. 1985. Tropospheric ozone: seasonal behaviour, trends and anthropogenic influence. Journal of Geophysical Research 90, 10463–82.CrossRefGoogle Scholar
Mehlhorn, H. & Wellburn, A. R. 1987. Stress ethylene formation determines plant-sensitivity to ozone. Nature 327, 417–18.CrossRefGoogle Scholar
Monteith, J. L. & Unsworth, M. H. 1990. Principles of environmental physics (2nd edn). London: Edward Arnold.Google Scholar
Moser, T. J., Tingey, D. T., Rodecap, K. D., Rossi, D. J. & Clark, C. S. 1988. Drought stress applied during the reproductive phase reduced ozone-induced effects in bush bean. In Heck, W. W., Taylor, O. C. & Tingey, D. T. (Eds) Assessment of crop loss from air pollutants, 354–64. London: Elsevier.Google Scholar
Neighbour, E. A., Pearson, M. & Mehlhorn, H. 1990 Purafil-filtration prevents the development of ozone-induced frost injury - a potential role for nitric oxide. Atmospheric Environment 24A, 711–15.CrossRefGoogle Scholar
Paulson, S. E., Flagan, R. C. & Seinfeld, J. H. 1992. Atmospheric photo-oxidation of isoprene Part II: the ozone-isoprene reaction. International Journal of Chemical Kinetics 24, 103–25.CrossRefGoogle Scholar
Payer, H. D., Bosch, C., Blank, L. W., Eisenmann, T. & Runkel, K. H. 1986. Beschreibung der Expositionskammern und der Versuchsbedingungen bei der Belastung von Pflanzen mit Luftschadstoffen und Klimastress. Forstwissentschaftliches Centralblatt 105, 207218.Google Scholar
Pedersen, U. 1992. Ozone data report 1988. EMEP/CCC Report 1/92. NILU, Lillestrom, Norway.Google Scholar
Penkett, S. A. & Brice, K. A. 1986. The spring maximum in photo-oxidants in the northern hemisphere troposphere. Nature 319, 655–7.CrossRefGoogle Scholar
Percy, K. E., Jensen, K. F. & McQuattie, C. J. 1992. Effects of ozone and acidic fog on red spruce needle epicuticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability. New Phytologist 122, 7180.CrossRefGoogle ScholarPubMed
PORG (Photochemical Oxidants Review Group). 1987. Ozone in the United Kingdom. Interim report. Didcot: AEA Harwell Laboratory.Google Scholar
PORG (Photochemical Oxidants Review Group). 1994. Ozone in the United Kingdom 1993. Third Report. London: Department of the Environment.Google Scholar
Preston, E. M. & Tingey, D. T. 1988. The NCLAN program for crop loss assessment. In Heck, W. W., Taylor, O. C. & Tingey, D. T. (Eds) Assessment of crop loss from air pollutants, 4564. London: Elsevier.CrossRefGoogle Scholar
Prinz, B. 1988. Ozone effects on vegetation. In Isaksen, I. S. A. (Ed) Tropospheric ozone: regional and global scale interactions, 161–84. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Reiling, K. & Davison, A. W. 1992. Spatial variation in ozone resistance of British populations of Plantago major L. New Phytologist 122, 699708.CrossRefGoogle Scholar
Rowland, F. S. & Isaksen, I. S. A. (Eds) The changing atmosphere. Chichester: Wiley.Google Scholar
Sanders, G. E., Robinson, A. D. Geissler, P. A. & Colls, J. J. 1992. Yield stimulation of a commonly grown cultivar of Phaseolus vulgaris L. at near-ambient ozone concentrations. New Phytologist 122, 6370.CrossRefGoogle ScholarPubMed
Sandroni, S., Anfossi, D. & Viarengo, S. 1992. Surface ozone levels at the end of the nineteenth century in South America. Journal of Geophysical Research 97, 2535–9.CrossRefGoogle Scholar
Scheel, H. E., Brunke, E. G. & Seller, W. 1990. Trace gas measurements at the monitoring station Cape Point, South Africa, between 1978 and 1988. Journal of Atmospheric Chemistry 11, 197210.CrossRefGoogle Scholar
Slaughter, L. H., Mulchi, C. L. & Lee, E. H. 1993. Wheat-kernel growth-characteristics during exposure to chronic ozone pollution. Environmental Pollution 81, 73–9.CrossRefGoogle ScholarPubMed
Smith, R. I., Fowler, D. & Cape, J. N. 1989. The statistics of phytotoxic air pollutants. Journal of the Royal Statistical Society A 152, 183–98.CrossRefGoogle Scholar
Taylor, G. E. & Hanson, P. J. 1992. Forest trees and tropospheric ozone: role of canopy deposition and leaf uptake in developing exposure-response relationships. Agriculture, Ecosystems & Environment 42, 255–73.CrossRefGoogle Scholar
Temple, P. J. & Taylor, A. C. 1983. World wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment 17, 1583–7.CrossRefGoogle Scholar
Thompson, C. R., Kats, G., Olszyk, D. M. & Adams, C. J. 1992. Humidity as a modifier of vegetation responses to ozone: design and testing of a humidification system for open-top field chambers. Journal of Air and Waste Management Association 42, 1063–6.CrossRefGoogle Scholar
Unsworth, M. H. 1991. Air pollution and vegetation: hypothesis, field exposure and experiment. Proceedings of the Royal Society of Edinburgh 97B, 139–54.Google Scholar
Vaughan, G. & Price, J. D. 1993. The potential for stratosphere troposphere exchange in cut-off-low systems. Quarterly Journal of the Royal Meteorological Society 119, 343–65.Google Scholar
Wesely, M. L., Eastman, J. A., Cook, D. R. & Hicks, B. B. 1978. Daytime variations of ozone eddy fluxes to maize. Boundary Layer Meteorology 15, 361–73.CrossRefGoogle Scholar
Volz, A. & Kley, D. 1988. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 332, 240–42.CrossRefGoogle Scholar
Weston, K. J., Kay, P. J. A., Fowler, D., Martin, A. & Bower, J. S. 1989. Mass budget studies of photochemical ozone production over the U.K. Atmospheric Environment 23, 1349–60.CrossRefGoogle Scholar