Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T07:58:38.806Z Has data issue: false hasContentIssue false

In Search of a Pointless Decision Principle

Published online by Cambridge University Press:  28 February 2022

Prasanta S. Bandyopadhayay*
Affiliation:
University of Rochester

Extract

“Maximizing expected utility (MEU)” is one assumption of (strict) Bayesian decision theory [Savage 1972]. According to the principle of MEU, in a given decision situation, the decision maker should choose one of the alternatives with maximal expected utility [For an excellent discussion of decision theory, see Jeffrey 1990]. However, MEU as the foundation of Bayesian decision theory has been under attack. One counterexample that seems to dispute MEU as a rationality principle is offered by Daniel Ellsberg[Ellsberg 1961]. While discussing what has been dubbed as the Ellsberg paradox, I will consider briefly three decision principles, each of which is different from the MEU principle.

Type
Part VII. Statistics and Experimental Reasoning
Copyright
Copyright © 1994 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

The author acknowledges his debt to Prasun Basu, John G. Bennett, Abhijit Dasgupta, Deepnarayan Gupta, Jack Hall, Henry Kyburg Jr., Isaac Levi, Patrick Maher, Michael Mathias, Abhaya Nayak, Nihls-Eric Sahlin, Paul Weirich for their suggestions and comments on earlier versions of the paper and to Peter G. Found for suggesting to him the title of the paper. John G. Bennett deserves special mention for helping him in thinking through the difficult areas of decision theory.

References

Ellsberg, D. (1961), “Risk, Ambiguity, and the Savage AxiomsQuarterly Journal of Economics, 75,528557. Also, in Gardenfors and Sahlin (eds).CrossRefGoogle Scholar
Gardenfors, P.. and Sahlin, N. (1988), “Unreliable Probabilities, Risk Taking, and Decision Making” in Gardenfors, and Sahlin, (eds). Decision, Probability, and Utility, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kyburg, H.E. Jr., (1983a), Epistemology and Inference, Minneappolis: University of Minnesota Press.Google Scholar
Kyburg, H.E. Jr., (1983b). “Rational Belief in The Behavioral and Brain Sciences, Vol 6: No 2, 231273.CrossRefGoogle Scholar
Kyburg, H.E. Jr., (1990). Science and Reason, Oxford: Oxford University Press.Google Scholar
Kyburg, H.E. Jr., (1994). “Believing on the Basis of the Evidence” in Computational Intelligence, Vol 10; No 1.Google Scholar
Levi, I. (1974), “On Indeterminate Probabilities”, in Journal of Philosophy 71:391418.CrossRefGoogle Scholar
Levi, I.(1988), Hard Choices, Cambridge: Cambridge University Press.Google Scholar
Jeffrey, R. (1990), The Logic of Decision, Chicago: University of Chicago Press.Google Scholar
Sahlin, N. (1985), “Three decision rules for generalized probability representations” in The Behavioral and Brain Sciences, Vol 8, No 4: 751753.CrossRefGoogle Scholar
Sahlin, N. (1993), “On Higher Order Beliefs” in Philosophy of Probability (ed) Dubucs, J.P., Holland: Kluwer Academy.Google Scholar
Savage, L. (1972). The Foundations of Statistics, New York: Dover Publications, Inc.Google Scholar