Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T00:06:00.868Z Has data issue: false hasContentIssue false

On the Usefulness of Modal Logic in Axiomatizations of Physics

Published online by Cambridge University Press:  28 February 2022

Aldo Bressan*
Affiliation:
Università di Padova

Extract

Natural sciences such as geology, geography, and astronomy are mainly interested in describing features of the real world. Other sciences such as physics and chemistry deal with certain classes of possible phenomena, no matter whether they really taken place or not. The former sciences are based on the latter, so that all are interested in possible phenomena or worlds.

Roughly speaking, on the one hand there are some axiomatic theories - e.g. theories of classical mechanics similar to Newton's presentation of mechanics - that speak of phenomena occurring in the typical possible world, without considering basic relations involving several of these worlds. These theories do not aim very much at reducing primitive concepts. On the other hand, to make assertions involving possible worlds is practically compulsory in theories that include the definition of some constitutive magnitudes, i.e. magnitudes that characterize the reaction of a system S to a situation Σ possibly depending on parameters.

Type
Part VIII Symposium: Modality and the Analysis of Scientific Propositions
Copyright
Copyright © 1974 by D. Reidel Publishing Company

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This conference was prepared in the sphere of activity of the research group for mathematical physics of the Consiglio Nazionale delle Ricerche, in 1971-72 and 1972-73.

References

Bressan, A., ‘Metodo di assiomatizzazione in senso stretto della Meccanica classica. Applicazione di esso ad alcuni problemi di assiomatizzazione non ancora completamente risolti’ Rend. Sent. Mat. Univ. di Padova 32 (1962), 55.Google Scholar
Bressan, A., ‘Cinematica dei sistemi continui in relativita generale’, Annali di Mat. pura edappl. Serie IV 62 (1963), 99.CrossRefGoogle Scholar
Bressan, A., ‘Termodinamica e magneto-visco-elasticita con deformazioni finite in relativita generale’, Rend. Sent. Mat. Univ. di Padova 34 (1964), 1.Google Scholar
Bressan, A., ‘Una teoria di relatività generate includente, oltre all’elletromagnetismo e alia termodinamica, le equazioni costitutive, dei materiali ereditari. Sistemazione assiomatica’, Rend. Sent. Mat. Univ. di Padova 34 (1964), 74.Google Scholar
Bressan, A., ‘Elasticità con elettro-magneto-strizione’, Annali di Mat. pura e appl. (IV) 74 (1966), 383-399.CrossRefGoogle Scholar
Bressan, A., ‘Elasticità relativistica con coppie di contatto’, Ricerche di Mat. 15 (1966), 69.Google Scholar
Bressan, A., ‘Ancora sul teorema di Poynting e sul tensore energetico del campo elettromagnetico’, Rend. Acad. Naz. Lincei (VIII) 42 (1967), 491.Google Scholar
Bressan, A., ‘On Relativistic Thermodynamics’, Nuovo Cimento, Suppl. (X) 48 (1967), 201.Google Scholar
Bressan, A., ‘Intensional Descriptions and Relative Completeness in the General Interpreted Modal Calculus MC in Logic, Language and Probability (ed. by Bogdan, R. J. and Niiniluoto, I.), D. Reidel Publ. Co., Dordrecht-Holland, 1973.Google Scholar
Bressan, A., A General Interpreted Modal Calculus, Yale Press, New Haven, London, 1972.Google Scholar
Bressan, A., ‘The Type-Free Interpreted Modal Calculus MCv being printed in Rend. Sem. Mat. Univ. Padova.Google Scholar
Bressan, A., Relativistic Theories of Materials, Springer, forthcoming.Google Scholar
Burks, A. W., ‘The Logic of Causal Propositions', Mind 60 (1961), 363.Google Scholar
Carnap, R., Introduction to Symbolic Logic and Its Applications, Dover Publ., New York, 1958.Google Scholar
Carnap, R.,Meaning and Necessity, The Univ. Chicago Press, 1956.Google Scholar
Carnap, R., ‘Replies and Systematic Expositions’ in Paul, A. Schilpp (ed.), The Philosophy of R. Carnap (Library of Living Philosophers), Tudor Publishing Co., New York, 1963, pp. 859-999.Google Scholar
Fock, V. A., The Theory of Space, Time, and Gravitation (2nd ed., transl. by Kemmer, N.), Pergamon Press, 1964.Google Scholar
Hermes, H., ‘Eine Axiomatiserung der Allgemeinen Mechanik’, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Vol. 3 (Heft 3), Verlag von Hirzel in Leipzig (1938).Google Scholar
Hermes, H., ‘Zur Axiomatisierung der Mechanik’, Proceeding of the International Symposium on the Axiomatic Method held at Berkeley, 1957-58, North-Holland Publishing Co., Amsterdam, 1959, p. 250.Google Scholar
Hermes, H., ‘Modal Operators in an Axiomatisation of Mechanics’, Proceeding of the Colloque International sur la methode axiomatique classique et moderne, Paris, 1959.Google Scholar
Hughes, G. E. and Cresswell, M. J., An Introduction to Modal Logic, Methuen and Co., London, 1968.Google Scholar
McKinsey, J. C. C, Sugar, A. C, and Suppes, P., ‘Axiomatic Foundations of Classical Particle Mechanics’, Journal of Rational Mech. and Analysis 2 (1953), Section 2.Google Scholar
Meredith, C. A. and Prior, A. N., ‘Investigation into ImplicationalS Zeitschr.f. Math. Logik und Grundlagen d. Math. 10 (1964), 203.Google Scholar
Painlevé, P., Les axiomes de la mechanique, Gauthier-Villars, Paris, 1922.Google Scholar
Rosser, J.B., ‘Review of H. Hermes’, J.S.L. 3 (1938), 119-120.Google Scholar
Scott, Dana, ‘Advice on Modal Logic’, in Philosophical Problems in Logic (ed. by Lambert, K.), Humanities Press, 1969.Google Scholar
Signorini, A., Meccanica razionale, Vol. II, Chapter X, Perella, Roma, 1954, p. 1 (second ed.).Google Scholar