Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T23:22:27.287Z Has data issue: false hasContentIssue false

Probability as a Theoretical Concept in Physics

Published online by Cambridge University Press:  28 February 2022

Lorenz Krüger*
Affiliation:
Philosophisches Seminar der Universitaet Goettingen

Extract

What is the use of probability theory in the sciences? A common answer to this question is: probability is the conceptual tool for statistics, i.e. for the evaluation of collections of numerical data. This reply, that covers a wide range of applications may be rendered by saying that the calculus of probability is the theory for statistical practice. Under this interpretation, probability is part of scientific method; it belongs to the ‘logic’ of science, i.e. it regulates scientific inference. At most, it says something about the state of justified belief of a scientist, but nothing about the nature of his objects.

If I speak of probability as a theoretical concept, I intend to refer to a different use of probability in the sciences; an explanatory use, or - more cautiously put - a use within the framework of explanatory theories, e.g. in microphysics or evolutionary biology. Compared with the standard application to statistics, this use is exceptional and problematical.

Type
Part VIII. Probability
Copyright
Copyright © 1987 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Lorraine Daston and Wolfgang Carl have read a first draft of this paper and suggested valuable improvements. I have much benefited from the comment presented by John Norton at the Pittsburgh PSA Conference.

References

Balescu, R. (1975) Equilibrium and Non-Equilibrium Statistical Mechanics. New York: Wiley.Google Scholar
Boltzmann, Ludwig (1868) “Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten.” In Wissenschaftliche Abhandlungen. Edited by Hasenohrl, F., Volume 1. Leipzig 1909. (Reprint New York 1968.) pp. 49-96.Google Scholar
Boltzmann, Ludwig (1877) “über eine Beziehung zwischen dem zweiten Hauptsatz der mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Warmegleichgewicht.” In Wissenschaftliche Abhandlungen. Edited by Hasenohrl, F.. Volume 2. Leipzig 1909. (Reprint New York 1968.) pp. 164-223.Google Scholar
Boltzmann, Ludwig (1881) “Referat Über die Abhandlung von J.C. Maxwell.” In Wissenschaftliche Abhandlungen. Edited by Hasenohrl, F.. Volume 2. Leipzig 1909. (Reprint New York 1968.) Pp. 582.Google Scholar
Bortkewitsch, Ladislaw von. (1898) Das Gesetz der kleinen Zahlen. Leipzig: Teubner.Google Scholar
Bortkiewicz, Ladislaw von. (1913) Die radioaktive Strahlung als Gegenstand wahrscheinlichkeitstheoretischer Untersuchungen. Berlin: Springer.CrossRefGoogle Scholar
Daston, Lorraine J. (1987) “Rational Individuais versus Laws of Society: From Probability to Statistics.” In The Probabilistic Revolution, Volume 1: Ideas in History. Edited by Kruger, Lorenz, Lorraine, J. Daston, and Heidelberger, Michael. Cambridge, MA: The MIT Press, pp. 295-304.Google Scholar
Ehrenfest, Paul and Tatjana, (1911) “Begriffliche Grundlagen der statistischen Auffassung in der Mechanik.” In Encyclopadie der mathematischen Wissenschaften. Band 4. Artikel 32. Leipzig: Teubner. English translation: Ithaca, NY: Cornell University Press 1959.Google Scholar
Furth, Reinhold. (1920) Schwankungserscheinungen in der Physik. Braunschweig: Vieweg.CrossRefGoogle Scholar
Geiger, Hans and Nuttall, J.M. (1911, 1912) “The Ranges of the Alpha-Particles from Various Radioactive Substances and a Relation Between Range and Period of Transformation.” Philosophical Magazine 22: 613-621, and 23: 439-445.Google Scholar
Gibbs, J. Willard. (1902) Elementary Principles in Statistical Mechanics. New Haven: Yale University Press. (Reprint New York: Dover 1960.)Google Scholar
Gurney, R.W. and Condon, E.U. (1929) “Quantum Mechanics and Radioactive Disintegration.” Physical Review 33: 127-140.CrossRefGoogle Scholar
Hacking, Ian. (1975) The Emergence of Probability. Cambridge: University Press. (1983). “Nineteenth Century Cracks in the Concept of Determinism.” Journal of the History of Ideas 44: 455-475.Google Scholar
Hacking, Ian. (1987) “Was there a probabilistic revolution?” In The Probabilistic Revolution, Volume 1: Ideas in History. Edited by Krüger, Lorenz, Lorraine, J. Daston and Heidelberger, Michael. Cambridge, MA: The MIT Press, pp. 45-55.Google Scholar
Jaynes, Edwin T. (1967) “Foundations of Probability Theory and Statistical Mechanics.” In The Delaware Seminar in the Foundations of Physics, Volume 1. Edited by Bunge, Mario. Berlin: Springer. Chapter 6. pp. 77-101.CrossRefGoogle Scholar
Jeans, J. H. (1904) The Dynamical Theory of Gases. Cambridge: University Press. 4th edition 1925.Google Scholar
Jordan, Pascual. (1928) “Die Lichtquantenhypothese.” Ergebnisse der exakten Naturwissenschaften 7: 158-208.Google Scholar
Klein, Martin J. (1973) “The Development of Boltzmann's Statistical Ideas.” In The Boltzmann Equation. ﹛Acta Physica Austriaca, Supplement 10.) Edited by Cohen, E. and Thirring, W. pp. 53-106.CrossRefGoogle Scholar
Kohlrausch, K. W. (1906) “Uber Schwankungen der radioaktiven Umwandlung.” Sitzungsberichte der kaiserlichen Akademie zu Wien, Mathematisch- Naturwissenschaftliche Klasse, Abteilung Ha, 115: 673-682.Google Scholar
Krüger, Lorenz. (1981) “Reduction as a Problem: Some Remarks on the History of Statistical Mechanics from a Philosophical Point of View.” In Proceedings of the 1978 Pisa Conference on the History and Philosophy of Science. Volume 2. Edited by Hintikka, J., Gruender, D. and Agazzi, E.. Dordrecht: Reidel. pp. 147-174.Google Scholar
Kuhn, Thomas S. (1978) Black-Body Radiation and the Quantum Discontinuity, 1894-1912. Oxford: University Press.Google Scholar
Lindemann, F. A. (1915) “Note on the Relation between the Life of Radioactive Substances and the Range of the Rays Emitted.” Philosophical Magazine 30: 560-563.Google Scholar
Maxwell, James Clerk. (1873) “Molecules.” Reprinted in The Scientific Papers. Edited by Niven, W.D. Cambridge: University Press 1890. (Reprinted New York: 1965.).Google Scholar
Maxwell, James Clerk. (1875) “Atom.” Reprinted in The Scientific Papers. Edited by Niven, W.D.. Cambridge: University Press 1890. (Reprint New York: 1965.).Google Scholar
Pais, Abraham. (1977) “Radioactivity's Two Early Puzzles.” Reviews of Modern Physics 49: 925-938.CrossRefGoogle Scholar
Plato, Jan von. (1987) “Probabilistic Physics The Classical Way.” In The Probabilistic Revolution, Volume 2: Ideas in the Sciences. Edited by Kruger, Lorenz, Gigerenzer, Gerd and Morgan, Mary S.. Cambridge, MA: The MIT Press.Google Scholar
Planck, Max. (1926) Physikalische Gesetzlichkeit im Lichte neuerer Forschung. Leipzig: Barth.Google Scholar
Planck, Max. (1935) Die Physik im Kampf um die Weltanschauung. Leipzig: Barth.Google Scholar
Planck, Max. (1936) Das Weltbild der neueren Physik. Leipzig: Barth.Google Scholar
Planck, Max. (1938) Determinismus oder Indeterminismus? Leipzig: Barth.Google Scholar
Popper, Karl Raimund. (1959) “The Propensitiy Interpretation of Probaility.” The British Journal for the Philosophy of Science 10: 25-42.CrossRefGoogle Scholar
Porter, Theodore M. (1981) “A Statistical Survey of Gases: Maxwell's Social Physics.” Historical Studies in the Physical Sciences 12: 77-116.CrossRefGoogle Scholar
Porter, Theodore M. (1986) The Rise of Statistical Thinking. Princeton: University Press.Google Scholar
Prigogine, Ilya. (1962) Non-Equilibrium Statistical Mechanics. New York: Interscience Publishers.Google Scholar
Prigogine, Ilya. (1984) From Being to Becoming. 2nd edition. San Francisco: Freeman.Google Scholar
Rutherford, Ernest. (1904) Radio-activity. Cambridge: University Press.CrossRefGoogle Scholar
Rutherford, Ernest. and Soddy, Frederick. (1903) “Radio-active Change.” Philosophical Magazine 5.Google Scholar
Svedberg, The. (1912) Die Existenz der Moleküle. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Tisza, L. (1977) “The Foundations of Statistical Mechanics.” In PSA 1976. Edited by Suppe, F. and Asquith, P.D.. East Lansing, MI: PSA.Google Scholar
Weizsäcker, Carl-Friedrich von. (1939) “Der zweite Hauptsatz und der Unterschied von Vergangenheit und Zukunft.” Annalen der Physik 36: 275-283. (Reprinted as Chapter II.2 of Die Einheit der Natur. München: Hanser, 1972.)Google Scholar
Wolff, Hans T. (1919) “Atomkern und Alphastrahlung.” Annalen der Physik 60: 685-700.CrossRefGoogle Scholar
Wolff, Hans T. (1920) “Betrachtungen über den radioaktiven Zerfall des Atomkernes.” Physikalische Zeitschrift 21: 175-178.Google Scholar