Article contents
Non-Turing Computers and Non-Turing Computability
Published online by Cambridge University Press: 28 February 2022
Extract
Building on an idea by Pitowsky (1990), David Malament (private communications), Hogarth (1992) and Earman and Norton (1993) have shown how it is possible to perform computational supertasks—that is, an infinite number of computational steps in a finite span of time—in a kind of relativistic spacetime that Earman and Norton (1993) have dubbed a Malament-Hogarth spacetime.
Definition 1 A spacetime (M,g) is Malament-Hogarth just when there is a future endless curve with past endpoint and a point q∊M such that .
(Hereafter, the symbols “q” and “λ” are assumed to have the properties they have in Definition 1.1 shall also speak of a “λ-curve”.)
Various examples of Malament-Hogarth (hereafter, M-H) spacetimes are given in Hogarth (1992), but the following artificial example from Earman and Norton (1993) is perhaps the simplest.
- Type
- Part III. Spacetime and Related Matters
- Information
- Copyright
- Copyright © 1994 by the Philosophy of Science Association
Footnotes
I would like to thank Gordon Belot, George Boolos, Rob Clifton, John Norton, Adrian Stanley and particularly Jeremy Butterfield for their helpful suggestions.
References
- 24
- Cited by