Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T17:56:05.378Z Has data issue: false hasContentIssue false

Altered activation of the ventral striatum under performance-related observation in social anxiety disorder

Published online by Cambridge University Press:  03 May 2017

M. P. I. Becker*
Affiliation:
Department of Biological and Clinical Psychology, Friedrich Schiller University, D-07743 Jena, Germany Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, D-48149 Muenster, Germany
D. Simon
Affiliation:
Department of Biological and Clinical Psychology, Friedrich Schiller University, D-07743 Jena, Germany Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, D-48149 Muenster, Germany
W. H. R. Miltner
Affiliation:
Department of Biological and Clinical Psychology, Friedrich Schiller University, D-07743 Jena, Germany
T. Straube
Affiliation:
Department of Biological and Clinical Psychology, Friedrich Schiller University, D-07743 Jena, Germany Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, D-48149 Muenster, Germany
*
*Address for correspondence: M. P. I. Becker, Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Von-Esmarch-Str. 52, D-48149 Muenster, Germany. (E-mail: beckermi@uni-muenster.de)

Abstract

Background

Social anxiety disorder (SAD) is characterized by fear of social and performance situations. The consequence of scrutiny by others for the neural processing of performance feedback in SAD is unknown.

Methods

We used event-related functional magnetic resonance imaging to investigate brain activation to positive, negative, and uninformative performance feedback in patients diagnosed with SAD and age-, gender-, and education-matched healthy control subjects who performed a time estimation task during a social observation condition and a non-social control condition: while either being monitored or unmonitored by a body camera, subjects received performance feedback after performing a time estimation that they could not fully evaluate without external feedback.

Results

We found that brain activation in ventral striatum (VS) and midcingulate cortex was modulated by an interaction of social context and feedback type. SAD patients showed a lack of social-context-dependent variation of feedback processing, while control participants showed an enhancement of brain responses specifically to positive feedback in VS during observation.

Conclusions

The present findings emphasize the importance of social-context processing in SAD by showing that scrutiny prevents appropriate reward-processing-related signatures in response to positive performances in SAD.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Amir, N, Klumpp, H, Elias, J, Bedwell, JS, Yanasak, N, Miller, LS (2005). Increased activation of the anterior cingulate cortex during processing of disgust faces in individuals with social phobia. Biological Psychiatry 57, 975981.CrossRefGoogle ScholarPubMed
Amir, N, Prouvost, C, Kuckertz, JM (2012). Lack of a benign interpretation bias in social anxiety disorder. Cognitive Behaviour Therapy 41, 119129.CrossRefGoogle ScholarPubMed
APA (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5. American Psychiatric Association: Washington, DC.Google Scholar
Becker, MPI, Nitsch, AM, Hewig, J, Miltner, WHR, Straube, T (2016). Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum. Neuroimage 143, 5057.CrossRefGoogle Scholar
Becker, MP, Nitsch, AM, Miltner, WH, Straube, T (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience 34, 30053012.CrossRefGoogle Scholar
Blair, K, Geraci, M, Devido, J, McCaffrey, D, Chen, G, Vythilingam, M, Ng, P, Hollon, N, Jones, M, Blair, RJ, Pine, DS (2008). Neural response to self- and other referential praise and criticism in generalized social phobia. Archives of General Psychiatry 65, 11761184.CrossRefGoogle ScholarPubMed
Boehme, S, Mohr, A, Becker, MP, Miltner, WH, Straube, T (2014 a). Area-dependent time courses of brain activation during video-induced symptom provocation in social anxiety disorder. Biology of Mood and Anxiety Disorders 4, 6.CrossRefGoogle ScholarPubMed
Boehme, S, Ritter, V, Tefikow, S, Stangier, U, Strauss, B, Miltner, WH, Straube, T (2014 b). Brain activation during anticipatory anxiety in social anxiety disorder. Social Cognitive and Affective Neuroscience 9, 14131418.CrossRefGoogle ScholarPubMed
Carlson, JM, Foti, D, Mujica-Parodi, LR, Harmon-Jones, E, Hajcak, G (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study. Neuroimage 57, 16081616.CrossRefGoogle ScholarPubMed
Cieslik, EC, Mueller, VI, Eickhoff, CR, Langner, R, Eickhoff, SB (2015). Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neuroscience and Biobehavioral Reviews 48, 2234.CrossRefGoogle ScholarPubMed
Clark, DM, Wells, AA (1995). A cognitive model of social phobia. In Social Phobia: Diagnossi, Assessment, and Treatment (ed. Heimberg, R. G., Liebowitz, M. R., Hope, D. A. and Schneider, F. R.). pp. 6993. Guilford Press: New York.Google Scholar
Clithero, JA, Rangel, A (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience 9, 12891302.CrossRefGoogle Scholar
Cremers, HR, Veer, IM, Spinhoven, P, Rombouts, SA, Roelofs, K (2014). Neural sensitivity to social reward and punishment anticipation in social anxiety disorder. Frontiers in Behavioral Neuroscience 8, 439.Google ScholarPubMed
Daniel, R, Pollmann, S (2014). A universal role of the ventral striatum in reward-based learning: evidence from human studies. Neurobiology of Learning and Memory 114, 90100.CrossRefGoogle ScholarPubMed
Deichmann, R, Gottfried, JA, Hutton, C, Turner, R (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430441.CrossRefGoogle ScholarPubMed
Deserno, L, Huys, QJ, Boehme, R, Buchert, R, Heinze, HJ, Grace, AA, Dolan, RJ, Heinz, A, Schlagenhauf, F (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Science of the Unites States of America 112, 15951600.CrossRefGoogle ScholarPubMed
Fischer, AG, Endrass, T, Reuter, M, Kubisch, C, Ullsperger, M (2015). Serotonin Reuptake inhibitors and serotonin transporter genotype modulate performance monitoring functions but not their electrophysiological correlates. Journal of Neuroscience 35, 81818190.CrossRefGoogle Scholar
Freitas-Ferrari, MC, Hallak, JE, Trzesniak, C, Filho, AS, Machado-de-Sousa, JP, Chagas, MH, Nardi, AE, Crippa, JA (2010). Neuroimaging in social anxiety disorder: a systematic review of the literature. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34, 565580.CrossRefGoogle ScholarPubMed
Gilboa-Schechtman, E, Franklin, ME, Foa, EB (2000). Anticipated reactions to social events: differences among individuals with generalized social phobia, obsessive compulsive disorder, and nonanxious controls. Cognitive Therapy and Research 24, 731746.CrossRefGoogle Scholar
Goebel, R, Esposito, F, Formisano, E (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27, 392401.CrossRefGoogle ScholarPubMed
Haber, SN, Knutson, B (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 426.CrossRefGoogle ScholarPubMed
Hautzinger, M, Bailer, M, Worall, H, Keller, F (1995). Beck-Depressions-Inventar (BDI) [Beck Depression Inventory (BDI)]. Hans Huber: Bern.Google Scholar
Heimberg, RG, Hofmann, SG, Liebowitz, MR, Schneier, FR, Smits, JA, Stein, MB, Hinton, DE, Craske, MG (2014). Social anxiety disorder in DSM-5. Depression and Anxiety 31, 472479.CrossRefGoogle ScholarPubMed
Heitmann, CY, Peterburs, J, Mothes-Lasch, M, Hallfarth, MC, Bohme, S, Miltner, WH, Straube, T (2014). Neural correlates of anticipation and processing of performance feedback in social anxiety. Human Brain Mapping 35, 60236031.CrossRefGoogle ScholarPubMed
Izuma, K, Saito, DN, Sadato, N (2008). Processing of social and monetary rewards in the human striatum. Neuron 58, 284294.CrossRefGoogle ScholarPubMed
Jensen, D, Heimberg, RG (2015). Domain-specific intolerance of uncertainty in socially anxious and contamination-focused obsessive-compulsive individuals. Cognitive Behaviour Therapy 44, 5462.CrossRefGoogle ScholarPubMed
Jessup, RK, Busemeyer, JR, Brown, JW (2010). Error effects in Anterior Cingulate cortex reverse when error likelihood is high. Journal of Neuroscience 30, 34673472.CrossRefGoogle ScholarPubMed
Kessler, RC, Stein, MB, Berglund, P (1998). Social phobia subtypes in the National Comorbidity Survey. The American Journal of Psychiatry 155, 613619.CrossRefGoogle ScholarPubMed
Kimbrel, NA (2008). A model of the development and maintenance of generalized social phobia. Clinical Psychology Review 28, 592612.CrossRefGoogle Scholar
Lancaster, JL, Tordesillas-Gutierrez, D, Martinez, M, Salinas, F, Evans, A, Zilles, K, Mazziotta, JC, Fox, PT (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping 28, 11941205.CrossRefGoogle ScholarPubMed
Le Bouc, R, Pessiglione, M (2013). Imaging social motivation: distinct brain mechanisms drive effort production during collaboration versus competition. Journal of Neuroscience 33, 1589415902.CrossRefGoogle ScholarPubMed
Lin, A, Adolphs, R, Rangel, A (2012). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience 7, 274281.CrossRefGoogle ScholarPubMed
Maldjian, JA, Laurienti, PJ, Kraft, RA, Burdette, JH (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19, 12331239.CrossRefGoogle ScholarPubMed
Menon, V (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15, 483506.CrossRefGoogle ScholarPubMed
Miltner, WHR, Braun, CH, Coles, MGH (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience 9, 788798.CrossRefGoogle Scholar
Miskovic, V, Schmidt, LA (2012). Social fearfulness in the human brain. Neuroscience and Biobehavioral Reviews 36, 459478.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S, Slagter, HA, von Geusau, NJ, Heslenfeld, DJ, Holroyd, CB (2005). Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes. European Journal of Neuroscience 21, 31613168.CrossRefGoogle ScholarPubMed
O'Doherty, JP, Cockburn, J, Pauli, Wm (2017). Learning, reward, and decision making. Annual Review of Psychology 68, 73100.CrossRefGoogle ScholarPubMed
Rachman, S, Gruter-Andrew, J, Shafran, R (2000). Post-event processing in social anxiety. Behaviour Research and Therapy 38, 611617.CrossRefGoogle ScholarPubMed
Richey, JA, Ghane, M, Valdespino, A, Coffman, MC, Strege, MV, White, SW, Ollendick, TH (2017). Spatiotemporal dissociation of brain activity underlying threat and reward in social anxiety disorder. Social Cognitive and Affective Neuroscience 12, 8194.CrossRefGoogle Scholar
Richey, JA, Rittenberg, A, Hughes, L, Damiano, CR, Sabatino, A, Miller, S, Hanna, E, Bodfish, JW, Dichter, GS (2014). Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Social Cognitive and Affective Neuroscience 9, 367377.CrossRefGoogle ScholarPubMed
Rilling, JK, Sanfey, AG (2011). The neuroscience of social decision-making. Annual Review of Psychology 62, 2348.CrossRefGoogle ScholarPubMed
Ruff, CC, Fehr, E (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience 15, 549562.CrossRefGoogle ScholarPubMed
Salimpoor, VN, Benovoy, M, Larcher, K, Dagher, A, Zatorre, RJ (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience 14, 257262.CrossRefGoogle Scholar
Schlagenhauf, F, Rapp, MA, Huys, QJ, Beck, A, Wustenberg, T, Deserno, L, Buchholz, HG, Kalbitzer, J, Buchert, R, Bauer, M, Kienast, T, Cumming, P, Plotkin, M, Kumakura, Y, Grace, AA, Dolan, RJ, Heinz, A (2013). Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping 34, 14901499.CrossRefGoogle ScholarPubMed
Schneier, FR, Abi-Dargham, A, Martinez, D, Slifstein, M, Hwang, DR, Liebowitz, MR, Laruelle, M (2009). Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depression and Anxiety 26, 411418.CrossRefGoogle ScholarPubMed
Schneier, FR, Liebowitz, MR, Abi-Dargham, A, Zea-Ponce, Y, Lin, SH, Laruelle, M (2000). Low dopamine D(2) receptor binding potential in social phobia. American Journal of Psychiatry 157, 457459.CrossRefGoogle ScholarPubMed
Schneier, FR, Martinez, D, Abi-Dargham, A, Zea-Ponce, Y, Simpson, HB, Liebowitz, MR, Laruelle, M (2008). Striatal dopamine D(2) receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depression and Anxiety 25, 17.CrossRefGoogle ScholarPubMed
Schulz, C, Mothes-Lasch, M, Straube, T (2013). Automatic neural processing of disorder-related stimuli in social anxiety disorder: faces and more. Frontiers in Psychology 4, 282.CrossRefGoogle ScholarPubMed
Shackman, AJ, Salomons, TV, Slagter, HA, Fox, AS, Winter, JJ, Davidson, RJ (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience 12, 154167.CrossRefGoogle ScholarPubMed
Simon, D, Becker, MP, Mothes-Lasch, M, Miltner, WH, Straube, T (2014). Effects of social context on feedback-related activity in the human ventral striatum. Neuroimage 99, 16.CrossRefGoogle ScholarPubMed
Sripada, C, Angstadt, M, Liberzon, I, McCabe, K, Phan, KL (2013). Aberrant reward center response to partner reputation during a social exchange game in generalized social phobia. Depression and Anxiety 30, 353361.CrossRefGoogle ScholarPubMed
Stangier, U, Frydrich, T (2002). Soziale Phobie und Soziale Angststoerung: Psychologische Grundlagen, Diagnostik und Therapie [Social Phobia and Social Anxiety Disorder: Psychological Principals, Diagnosis and Therapy]. Beltz: Göttingen, Germany.Google Scholar
Stangier, U, Heidenreich, T (2005). Liebowitz Soziale Angst Skala [Liebowitz social anxiety scale]. In Internationale Skalen für Psychiatrie (ed. Scalarum, C.I.P.), pp. 299307. Beltz Test: Göttingen.Google Scholar
Straube, T, Kolassa, IT, Glauer, M, Mentzel, HJ, Miltner, WH (2004). Effect of task conditions on brain responses to threatening faces in social phobics: an event-related functional magnetic resonance imaging study. Biological Psychiatry 56, 921930.CrossRefGoogle ScholarPubMed
Talairach, J, Tournoux, P (1988). Co-Planar Stereotaxic Atlas of the Human Brain. Thieme: Stuttgart.Google Scholar
Tiihonen, J, Kuikka, J, Bergstrom, K, Lepola, U, Koponen, H, Leinonen, E (1997). Dopamine reuptake site densities in patients with social phobia. American Journal of Psychiatry 154, 239242.Google ScholarPubMed
Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, Mazoyer, B, Joliot, M (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273289.CrossRefGoogle ScholarPubMed
van der Wee, NJ, van Veen, JF, Stevens, H, van Vliet, IM, van Rijk, PP, Westenberg, HG (2008). Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-beta-(4-iodophenyl)-tropane SPECT. Journal of Nuclear Medicine 49, 757763.CrossRefGoogle Scholar
van Veen, V, Holroyd, CB, Cohen, JD, Stenger, VA, Carter, CS (2004). Errors without conflict: implications for performance monitoring theories of anterior cingulate cortex. Brain and Cognition 56, 267276.CrossRefGoogle ScholarPubMed
Vormbrock, F, Neuser, J (1983). Konstruktion zweier spezifischer Trait-Fragebogen zur Erfassung von Angst in sozialen Situationen (SANB und SVSS) [Construction of two specific trait questionnaires for assesment of fear in social situations (SANB and SVSS)]. Diagnostica 29, 165182.Google Scholar
Wallace, ST, Alden, LE (1997). Social phobia and positive social events: the price of success. Journal of Abnormal Psychology 106, 416424.CrossRefGoogle Scholar
Walton, ME, Devlin, JT, Rushworth, MF (2004). Interactions between decision making and performance monitoring within prefrontal cortex. Nature Neuroscience 7, 12591265.CrossRefGoogle ScholarPubMed
Wittchen, HU, Wunderlich, U, Gruschwitz, S, Zaudig, M (1996) Strukturiertes Klinisches Interview für DSM-IV (SKID) [Structured Clinical Interview for DSM-IV (SCID)]. Beltz-Test: Göttingen, Germany.Google Scholar