Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T11:12:52.045Z Has data issue: false hasContentIssue false

Differing brain structural correlates of familial and environmental risk for major depressive disorder revealed by a combined VBM/pattern recognition approach

Published online by Cambridge University Press:  10 September 2015

N. Opel
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
P. Zwanzger
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany kbo-Inn-Salzach-Hospital, Wasserburg am Inn, Germany
R. Redlich
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
D. Grotegerd
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
K. Dohm
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
V. Arolt
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
W. Heindel
Affiliation:
Department of Clinical Radiology, University of Münster, Münster, Germany
H. Kugel
Affiliation:
Department of Clinical Radiology, University of Münster, Münster, Germany
U. Dannlowski*
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany Department of Psychiatry, University of Marburg, Marburg, Germany
*
* Address for correspondence: U. Dannlowski, M.A., M.D., Ph.D., Department of Psychiatry, University of Münster, Albert-Schweitzer Campus 1 A9, 48149 Münster, Germany. (Email: dannlow@uni-muenster.de)

Abstract

Background

Neuroimaging traits of either familial or environmental risk for major depressive disorder (MDD) have been interpreted as possibly useful vulnerability markers. However, the simultaneous occurrence of familial and environmental risk might prove to be a major obstacle in the attempt of recent studies to confine the precise impact of each of these conditions on brain structure. Moreover, the exclusive use of group-level analyses does not permit prediction of individual illness risk which would be the basic requirement for the clinical application of imaging vulnerability markers. Hence, we aimed to distinguish between brain structural characteristics of familial predisposition and environmental stress by using both group- and individual-level analyses.

Method

We investigated grey matter alterations between 20 healthy control subjects (HC) and 20 MDD patients; 16 healthy first-degree relatives of MDD patients (FH+) and 20 healthy subjects exposed to former childhood maltreatment (CM+) by using a combined VBM/pattern recognition approach.

Results

We found similar grey matter reductions in the insula and the orbitofrontal cortex in patients and FH+ subjects and in the hippocampus in patients and CM+ subjects. No direct overlap in grey matter alterations was found between FH+ and CM+ subjects. Pattern classification successfully detected subjects at risk for the disease even by strictly focusing on morphological traits of MDD.

Conclusions

Familial and environmental risk factors for MDD are associated with differing morphometric anomalies. Pattern recognition might be a promising instrument in the search for and future application of vulnerability markers for MDD.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amico, F, Meisenzahl, EM, Koutsouleris, NN, Reiser, M, Möller, H-JH-J, Frodl, T (2011). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry and Neuroscience 36, 1522.CrossRefGoogle ScholarPubMed
Arnone, D, McIntosh, AM, Ebmeier, KP, Munafò, MR, Anderson, IM (2012). Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. European Neuropsychopharmacology 22, 116.Google Scholar
Avery, JA, Drevets, WC, Moseman, SE, Bodurka, J, Barcalow, JC, Simmons, WK (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry 76, 258266.CrossRefGoogle ScholarPubMed
Baaré, WFC, Vinberg, M, Knudsen, GM, Paulson, OB, Langkilde, AR, Jernigan, TL, Kessing, LV (2010). Hippocampal volume changes in healthy subjects at risk of unipolar depression. Journal of Psychiatric Research 44, 655662.CrossRefGoogle ScholarPubMed
Beck, AT, Steer, RA (1987). Beck Depression Inventory: Manual. Psychological Corporation: San Antonio, TX.Google Scholar
Bernstein, DP, Fink, L, Handelsman, L, Foote, J, Lovejoy, M, Wenzel, K, Sapareto, E, Ruggiero, J (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. American Journal of Psychiatry 151, 11321136.Google ScholarPubMed
Birmaher, B, Arbelaez, C, Brent, D (2002). Course and outcome of child and adolescent major depressive disorder. Child and Adolescent Psychiatric Clinics of North America 11, 619637, x.CrossRefGoogle ScholarPubMed
Chaffin, M, Kelleher, K, Hollenberg, J (1996). Onset of physical abuse and neglect: psychiatric, substance abuse, and social risk factors from prospective community data. Child Abuse and Neglect 20, 191203.Google Scholar
Chaney, A, Carballedo, A, Amico, F, Fagan, A, Skokauskas, N, Meaney, J, Frodl, T (2014). Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants. Journal of Psychiatry and Neuroscience 39, 5059.Google Scholar
Chang, C, Lin, C (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 127.Google Scholar
Chemtob, CM, Gudiño, OG, Laraque, D (2013). Maternal posttraumatic stress disorder and depression in pediatric primary care: association with child maltreatment and frequency of child exposure to traumatic events. JAMA Pediatrics 167, 10111018.Google Scholar
Chen, MC, Hamilton, JP, Gotlib, IH (2010). Decreased hippocampal volume in healthy girls at risk of depression. Archives of General Psychiatry 67, 270276.Google Scholar
Cole, J, Costafreda, SG, McGuffin, P, Fu, CHY (2011). Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. Journal of Affective Disorders 134, 483487.Google ScholarPubMed
Dager, AD, McKay, DR, Kent, JW, Curran, JE, Knowles, E, Sprooten, E, Göring, HHH, Dyer, TD, Pearlson, GD, Olvera, RL, Fox, PT, Lovallo, WR, Duggirala, R, Almasy, L, Blangero, J, Glahn, DC (2015). Shared genetic factors influence amygdala volumes and risk for alcoholism. Neuropsychopharmacology 40, 412420.Google Scholar
Dannlowski, U, Grabe, HJ, Wittfeld, K, Klaus, J, Konrad, C, Grotegerd, D, Redlich, R, Suslow, T, Opel, N, Ohrmann, P, Bauer, J, Zwanzger, P, Laeger, I, Hohoff, C, Arolt, V, Heindel, W, Deppe, M, Domschke, K, Hegenscheid, K, Völzke, H, Stacey, D, Meyer Zu Schwabedissen, H, Kugel, H, Baune, BT (2015). Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919) – specific effects on hippocampal gray matter structure. Molecular Psychiatry 20, 398404.Google Scholar
Dannlowski, U, Ohrmann, P, Konrad, C, Domschke, K, Bauer, J, Kugel, H, Hohoff, C, Schöning, S, Kersting, A, Baune, BT, Mortensen, LS, Arolt, V, Zwitserlood, P, Deckert, J, Heindel, W, Suslow, T (2009). Reduced amygdala–prefrontal coupling in major depression: association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology 12, 1122.Google Scholar
Dannlowski, U, Stuhrmann, A, Beutelmann, V, Zwanzger, P, Lenzen, T, Grotegerd, D, Domschke, K, Hohoff, C, Ohrmann, P, Bauer, J, Lindner, C, Postert, C, Konrad, C, Arolt, V, Heindel, W, Suslow, T, Kugel, H (2012). Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry 71, 286293.CrossRefGoogle ScholarPubMed
Drevets, WC, Price, JL, Simpson, JR, Todd, RD, Reich, T, Vannier, M, Raichle, ME (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824827.CrossRefGoogle ScholarPubMed
Forman, SD, Cohen, JD, Fitzgerald, M, Eddy, WF, Mintun, MA, Noll, DC (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine 33, 636647.Google Scholar
Frodl, T, O'Keane, V (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease 52, 2437.Google Scholar
Fu, CHY, Mourao-Miranda, J, Costafreda, SG, Khanna, A, Marquand, AF, Williams, SCR, Brammer, MJ (2008). Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biological Psychiatry 63, 656662.Google Scholar
Gilbert, R, Widom, CS, Browne, K, Fergusson, D, Webb, E, Janson, S (2009). Burden and consequences of child maltreatment in high-income countries. Lancet 373, 6881.Google Scholar
Grotegerd, D, Redlich, R, Almeida, JRC, Riemenschneider, M, Kugel, H, Arolt, V, Dannlowski, U (2014 a). MANIA – a pattern classification toolbox for neuroimaging data. Neuroinformatics 12, 471486.Google Scholar
Grotegerd, D, Stuhrmann, A, Kugel, H, Schmidt, S, Redlich, R, Zwanzger, P, Rauch, AV, Heindel, W, Zwitserlood, P, Arolt, V, Suslow, T, Dannlowski, U (2014 b). Amygdala excitability to subliminally presented emotional faces distinguishes unipolar and bipolar depression: an fMRI and pattern classification study. Human Brain Mapping 35, 29953007.Google Scholar
Hamilton, M (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry 23, 5662.CrossRefGoogle ScholarPubMed
Heim, CM, Newport, DJ, Mletzko, TC, Miller, AH, Nemeroff, CB (2008). The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33, 693710.Google Scholar
Hibar, DP, Stein, JL, Renteria, ME, Arias-Vasquez, A, Desrivières, S, Jahanshad, N, Toro, R, Wittfeld, K, Abramovic, L, Andersson, M, Aribisala, BS, Armstrong, NJ, Bernard, M, Bohlken, MM, Boks, MP, Bralten, J, Brown, AA, Mallar Chakravarty, M, Chen, Q, Ching, CRK, Cuellar-Partida, G, den Braber, A, Giddaluru, S, Goldman, AL, Grimm, O, Guadalupe, T, Hass, J, Woldehawariat, G, Holmes, AJ, Hoogman, M, Janowitz, D, Jia, T, Kim, S, Klein, M, Kraemer, B, Lee, PH, Olde Loohuis, LM, Luciano, M, Macare, C, Mather, KA, Mattheisen, M, Milaneschi, Y, Nho, K, Papmeyer, M, Ramasamy, A, Risacher, SL, Roiz-Santiañez, R, Rose, EJ, Salami, A, Sämann, PG, Schmaal, L, Schork, AJ, Shin, J, Strike, LT, Teumer, A, van Donkelaar, MMJ, van Eijk, KR, Walters, RK, Westlye, LT, Whelan, CD, Winkler, AM, Zwiers, MP, Alhusaini, S, Athanasiu, L, Ehrlich, S, Hakobjan, MMH, Hartberg, CB, Haukvik, UK, Heister, AJGAM, Hoehn, D, Kasperaviciute, D, Liewald, DCM, Lopez, LM, Makkinje, RRR, Matarin, M, Naber, MAM, Reese McKay, D, Needham, M, Nugent, AC, Pütz, B, Royle, NA, Shen, L, Sprooten, E, Trabzuni, D, van der Marel, SSL, van Hulzen, KJE, Walton, E, Wolf, C, Almasy, L, Ames, D, Arepalli, S, Assareh, AA, Bastin, ME, Brodaty, H, Bulayeva, KB, Carless, MA, Cichon, S, Corvin, A, Curran, JE, Czisch, M, de Zubicaray, GI, Dillman, A, Duggirala, R, Dyer, TD, Erk, S, Fedko, IO, Ferrucci, L, Foroud, TM, Fox, PT, Fukunaga, M, Gibbs, JR, Göring, HH, Green, RC, Guelfi, S, Hansell, NK, Hartman, CA, Hegenscheid, K, Heinz, A, Hernandez, DG, Heslenfeld, DJ, Hoekstra, PJ, Holsboer, F, Homuth, G, Hottenga, JJ, Ikeda, M, Jack, CR Jr, Jenkinson, M, Johnson, R, Kanai, R, Keil, M, Kent, JW Jr, Kochunov, P, Kwok, JB, Lawrie, SM, Liu, X, Longo, DL, McMahon, KL, Meisenzahl, E, Melle, I, Mohnke, S, Montgomery, GW, Mostert, JC, Mühleisen, TW, Nalls, MA, Nichols, TE, Nilsson, LG, Nöthen, MM, Ohi, K, Olvera, RL, Perez-Iglesias, R, Pike, GB, Potkin, SG, Reinvang, I, Reppermund, S, Rietschel, M, Romanczuk-Seiferth, N, Rosen, GD, Rujescu, D, Schnell, K, Schofield, PR, Smith, C, Steen, VM, Sussmann, JE, Thalamuthu, A, Toga, AW, Traynor, BJ, Troncoso, J, Turner, JA, Valdés Hernández, MC, van 't Ent, D, van der Brug, M, van der Wee, NJ, van Tol, MJ, Veltman, DJ, Wassink, TH, Westman, E, Zielke, RH, Zonderman, AB, Ashbrook, DG, Hager, R, Lu, L, McMahon, FJ, Morris, DW, Williams, RW, Brunner, HG, Buckner, RL, Buitelaar, JK, Cahn, W, Calhoun, VD, Cavalleri, GL, Crespo-Facorro, B, Dale, AM, Davies, GE, Delanty, N, Depondt, C, Djurovic, S, Drevets, WC, Espeseth, T, Gollub, RL, Ho, BC, Hoffmann, W, Hosten, N, Kahn, RS, Le Hellard, S, Meyer-Lindenberg, A, Müller-Myhsok, B, Nauck, M, Nyberg, L, Pandolfo, M, Penninx, BW, Roffman, JL, Sisodiya, SM, Smoller, JW, van Bokhoven, H, van Haren, NE, Völzke, H, Walter, H, Weiner, MW, Wen, W, White, T, Agartz, I, Andreassen, OA, Blangero, J, Boomsma, DI, Brouwer, RM, Cannon, DM, Cookson, MR, de Geus, EJ, Deary, IJ, Donohoe, G, Fernández, G, Fisher, SE, Francks, C, Glahn, DC, Grabe, HJ, Gruber, O, Hardy, J, Hashimoto, R, Hulshoff Pol, HE, Jönsson, EG, Kloszewska, I, Lovestone, S, Mattay, VS, Mecocci, P, McDonald, C, McIntosh, AM, Ophoff, RA, Paus, T, Pausova, Z, Ryten, M, Sachdev, PS, Saykin, AJ, Simmons, A, Singleton, A, Soininen, H, Wardlaw, JM, Weale, ME, Weinberger, DR, Adams, HH, Launer, LJ, Seiler, S, Schmidt, R, Chauhan, G, Satizabal, CL, Becker, JT, Yanek, L, van der Lee, SJ, Ebling, M, Fischl, B, Longstreth, WT Jr, Greve, D, Schmidt, H, Nyquist, P, Vinke, LN, van Duijn, CM, Xue, L, Mazoyer, B, Bis, JC, Gudnason, V, Seshadri, S, Ikram, MA; Alzheimer's Disease Neuroimaging Initiative; CHARGE Consortium; EPIGEN; IMAGEN; SYS, Martin, NG, Wright, MJ, Schumann, G, Franke, B, Thompson, PM, Medland, SE (2015). Common genetic variants influence human subcortical brain structures. Nature 520, 224229.Google Scholar
Husain, MM, Rush, AJ, Wisniewski, SR, McClintock, SM, Fava, M, Nierenberg, AA, Davis, L, Balasubramani, GK, Young, E, Albala, AA, Trivedi, MH (2009). Family history of depression and therapeutic outcome: findings from STAR*D. Journal of Clinical Psychiatry 70, 185195.Google Scholar
Kempton, MJ, Haldane, M, Jogia, J, Grasby, PM, Collier, D, Frangou, S (2009). Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. Journal of Neuroscience 29, 1086310868.Google Scholar
Kempton, MJ, Salvador, Z, Munafò, MR, Geddes, JR, Simmons, A, Frangou, S, Williams, SCR (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry 68, 675690.Google Scholar
Knowles, EEM, McKay, DR, Kent, JW, Sprooten, E, Carless, MA, Curran, JE, de Almeida, MAA, Dyer, TD, Göring, HHH, Olvera, RL, Duggirala, R, Fox, PT, Almasy, L, Blangero, J, Glahn, DC (2015). Pleiotropic locus for emotion recognition and amygdala volume identified using univariate and bivariate linkage. American Journal of Psychiatry 172, 190199.Google Scholar
Liu, C-H, Jing, B, Ma, X, Xu, P-F, Zhang, Y, Li, F, Wang, Y-P, Tang, L-R, Wang, Y-J, Li, H-Y, Wang, C-Y (2014). Voxel-based morphometry study of the insular cortex in female patients with current and remitted depression. Neuroscience 262, 190199.Google Scholar
Mwangi, B, Ebmeier, KP, Matthews, K, Steele, JD (2012). Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain : a Journal of Neurology 135, 15081521.Google Scholar
Opel, N, Redlich, R, Grotegerd, D, Dohm, K, Haupenthal, C, Heindel, W, Kugel, H, Arolt, V, Dannlowski, U (2015 a). Enhanced neural responsiveness to reward associated with obesity in the absence of food-related stimuli. Human Brain Mapping 36, 23302337.Google Scholar
Opel, N, Redlich, R, Grotegerd, D, Dohm, K, Heindel, W, Kugel, H, Arolt, V, Dannlowski, U (2015 b). Obesity and major depression: body-mass index (BMI) is associated with a severe course of disease and specific neurostructural alterations. Psychoneuroendocrinology 51, 219226.CrossRefGoogle ScholarPubMed
Opel, N, Redlich, R, Zwanzger, P, Grotegerd, D, Arolt, V, Heindel, W, Konrad, C, Kugel, H, Dannlowski, U (2014). Hippocampal atrophy in major depression: a function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology 39, 27232731.CrossRefGoogle ScholarPubMed
Pannekoek, JN, van der Werff, SJA, van den Bulk, BG, van Lang, NDJ, Rombouts, SARB, van Buchem, MA, Vermeiren, RRJM, van der Wee, NJA (2014). Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents. NeuroImage. Clinical 4, 336342.Google Scholar
Price, JL, Drevets, WC (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192216.CrossRefGoogle ScholarPubMed
Rao, U, Chen, L-A, Bidesi, AS, Shad, MU, Thomas, MA, Hammen, CL (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry 67, 357364.CrossRefGoogle ScholarPubMed
Redlich, R, Almeida, JJR, Grotegerd, D, Opel, N, Kugel, H, Heindel, W, Arolt, V, Phillips, ML, Dannlowski, U (2014). Brain morphometric biomarkers distinguishing unipolar and bipolar depression. JAMA Psychiatry 71, 12221230.Google Scholar
Redlich, R, Grotegerd, D, Opel, N, Kaufmann, C, Zwitserlood, P, Kugel, H, Heindel, W, Donges, U-S, Suslow, T, Arolt, V, Dannlowski, U (2015). Are you gonna leave me? Separation anxiety is associated with increased amygdala responsiveness and volume. Social Cognitive and Affective Neuroscience 10, 278284.Google Scholar
Rice, F, Harold, GT, Shelton, KH, Thapar, A (2006). Family conflict interacts with genetic liability in predicting childhood and adolescent depression. Journal of the American Academy of Child and Adolescent Psychiatry 45, 841848.Google Scholar
Sackeim, HA (2001). The definition and meaning of treatment-resistant depression. Journal of Clinical Psychiatry 62 (Suppl. 1), 1017.Google Scholar
Savitz, JB, Rauch, SL, Drevets, WC (2013). Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play. Molecular Psychiatry 18, 528539.CrossRefGoogle ScholarPubMed
Scott, KM, McLaughlin, KA, Smith, DA, Ellis, PM (2012). Childhood maltreatment and DSM-IV adult mental disorders: comparison of prospective and retrospective findings. British Journal of Psychiatry: The Journal of Mental Science 200, 469475.Google Scholar
Simmons, WK, Avery, JA, Barcalow, JC, Bodurka, J, Drevets, WC, Bellgowan, P (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping 34, 29442958.Google Scholar
Stratmann, M, Konrad, C, Kugel, H, Krug, A, Schöning, S, Ohrmann, P, Uhlmann, C, Postert, C, Suslow, T, Heindel, W, Arolt, V, Kircher, T, Dannlowski, U (2014). Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLOS ONE 9, e102692.Google Scholar
Sullivan, PF, Neale, MC, Kendler, KS (2000). Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry 157, 15521562.Google Scholar
Surguladze, S, Brammer, MJ, Keedwell, P, Giampietro, V, Young, AW, Travis, MJ, Williams, SCR, Phillips, ML (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry 57, 201209.Google Scholar
Teicher, MH, Anderson, CM, Polcari, A (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the USA 109, E563E572.CrossRefGoogle ScholarPubMed
Teicher, MH, Samson, JA (2013). Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. American Journal of Psychiatry 170, 11141133.Google Scholar
Terasawa, Y, Fukushima, H, Umeda, S (2013). How does interoceptive awareness interact with the subjective experience of emotion? An fMRI study. Human Brain Mapping 34, 598612.CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, Mazoyer, B, Joliot, M (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273289.Google Scholar
Van Harmelen, A-L, van Tol, M-J, van der Wee, NJ, Veltman, DJ, Aleman, A, Spinhoven, P, van Buchem, MA, Zitman, FG, Penninx, BWJH, Elzinga, BM (2010). Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biological Psychiatry 68, 832838.Google Scholar
Van Tol, M-J, van der Wee, NJA, van den Heuvel, OA, Nielen, MMA, Demenescu, LR, Aleman, A, Renken, R, van Buchem, MA, Zitman, FG, Veltman, DJ (2010). Regional brain volume in depression and anxiety disorders. Archives of General Psychiatry 67, 10021011.Google Scholar
Walker, E, Gelfand, A, Katon, WJ, Koss, MP, Von Korff, M, Bernstein, D, Russo, J (1999). Adult health status of women with histories of childhood abuse and neglect. American Journal of Medicine 107, 332339.Google Scholar
Wang, X-L, Du, M-Y, Chen, T-L, Chen, Z-Q, Huang, X-Q, Luo, Y, Zhao, Y-J, Kumar, P, Gong, Q-Y (2014). Neural correlates during working memory processing in major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 56C, 101108.Google Scholar
Wang, Y-C, Huang, C-C, Hsu, K-S (2010). The role of growth retardation in lasting effects of neonatal dexamethasone treatment on hippocampal synaptic function. PLoS ONE 5, e12806.Google Scholar
Williamson, DE, Birmaher, B, Axelson, DA, Ryan, ND, Dahl, RE (2004). First episode of depression in children at low and high familial risk for depression. Journal of the American Academy of Child and Adolescent Psychiatry 43, 291297.Google Scholar
Wittchen, H-U, Wunderlich, U, Gruschwitz, S, Zaudig, M (1997). SKID-I. Strukturiertes Klinisches Interview für DSM-IV (SCID-I. Structured Clinical Interview for DSM-IV). Hogrefe: Göttingen.Google Scholar
Woo, C-W, Krishnan, A, Wager, TD (2014). Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage 91, 412419.Google Scholar
Young, KD, Bellgowan, PSF, Bodurka, J, Drevets, WC (2013). Behavioral and neurophysiological correlates of autobiographical memory deficits in patients with depression and individuals at high risk for depression. JAMA Psychiatry 70, 698708.Google Scholar
Zimmermann, P, Brückl, T, Lieb, R, Nocon, A, Ising, M, Beesdo, K, Wittchen, H-U (2008). The interplay of familial depression liability and adverse events in predicting the first onset of depression during a 10-year follow-up. Biological Psychiatry 63, 406414.Google Scholar