Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T22:08:41.316Z Has data issue: false hasContentIssue false

Dissociated modulations of intranasal vasopressin on prosocial learning between reward-seeking and punishment-avoidance

Published online by Cambridge University Press:  19 August 2022

Guangzhi Deng
Affiliation:
Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
Hui Ai
Affiliation:
Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
Lili Qin
Affiliation:
Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
Jie Xu
Affiliation:
Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
Chunliang Feng*
Affiliation:
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
Pengfei Xu*
Affiliation:
Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
*
Authors for correspondence: Pengfei Xu, E-mail: pxu@bnu.edu.cn; Chunliang Feng, E-mail: chunliang.feng@m.scnu.edu.cn
Authors for correspondence: Pengfei Xu, E-mail: pxu@bnu.edu.cn; Chunliang Feng, E-mail: chunliang.feng@m.scnu.edu.cn

Abstract

Background

As an integral ingredient of human sociality, prosocial behavior requires learning what acts can benefit or harm others. However, it remains unknown how individuals adjust prosocial learning to avoid punishment or to pursue reward. Given that arginine vasopressin (AVP) is a neuropeptide that has been involved in modulating various social behaviors in mammals, it could be a crucial neurochemical facilitator that supports prosocial learning.

Methods

In 50 placebo controls and 54 participants with AVP administration, we examined the modulation of AVP on the prosocial learning characterized by reward and punishment framework, as well as its underlying neurocomputational mechanisms combining computational modeling, event-related potentials and oscillations.

Results

We found a self-bias that individuals learn to avoid punishment asymmetrically more severely than reward-seeking. Importantly, AVP increased behavioral performances and learning rates when making decisions to avoid losses for others and to obtain gains for self. These behavioral effects were underpinned by larger responses of stimulus-preceding negativity (SPN) to anticipation, as well as higher punishment-related feedback-related negativity (FRN) for prosocial learning and reward-related P300 for proself benefits, while FRN and P300 neural processes were integrated into theta (4–7 Hz) oscillation at the outcome evaluation stage.

Conclusions

These results suggest that AVP context-dependently up-regulates altruism for concerning others' losses and reward-seeking for self-oriented benefits. Our findings provide insight into the selectively modulatory roles of AVP in prosocial behaviors depending on learning contexts between proself reward-seeking and prosocial punishment-avoidance.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 2457. https://doi.org/10.1162/cpsy_a_00002.CrossRefGoogle ScholarPubMed
Albers, H. E. (2015). Species, sex and individual differences in the vasotocin/vasopressin system: Relationship to neurochemical signaling in the social behavior neural network. Frontiers in Neuroendocrinology, 36, 4971. https://doi.org/10.1016/j.yfrne.2014.07.001.CrossRefGoogle ScholarPubMed
Alberts, J. R. (1994). Learning as adaptation of the infant. Acta Paediatrica, Supplement, 397, 7785. https://doi.org/10.1111/j.1651-2227.1994.tb13269.x.CrossRefGoogle ScholarPubMed
Alves, H., Koch, A., & Unkelbach, C. (2017). The ‘common good’ phenomenon: Why similarities are positive and differences are negative. Journal of Experimental Psychology: General, 146(4), 512528. https://doi.org/10.1037/XGE0000276.CrossRefGoogle ScholarPubMed
Apps, M. A., Rushworth, M. F., & Chang, S. W. (2016). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90(4), 692707. https://doi.org/10.1016/j.neuron.2016.04.018.CrossRefGoogle ScholarPubMed
Avinun, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., & Knafo, A. (2011). AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9), e25274. https://doi.org/10.1371/journal.pone.0025274.CrossRefGoogle ScholarPubMed
Bernat, E. M., Nelson, L. D., Steele, V. R., Gehring, W. J., & Patrick, C. J. (2011). Externalizing psychopathology and gain-loss feedback in a simulated gambling task: Dissociable components of brain response revealed by time–frequency analysis. Journal of Abnormal Psychology, 120(2), 352364. https://doi.org/10.1037/a0022124.CrossRefGoogle Scholar
Born, J., Lange, T., Kern, W., McGregor, G. P., Bickel, U., & Fehm, H. L. (2002). Sniffing neuropeptides: A transnasal approach to the human brain. Nature Neuroscience, 5(6), 514516. https://doi.org/10.1038/nn849.CrossRefGoogle ScholarPubMed
Brunia, C. H., & Damen, E. J. (1988). Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69(3), 234243. https://doi.org/10.1016/0013-4694(88)90132-0.CrossRefGoogle Scholar
Brunia, C. H., Hackley, S. A., van Boxtel, G. J., Kotani, Y., & Ohgami, Y. (2011). Waiting to perceive: Reward or punishment?. Clinical Neurophysiology, 122(5), 858868. https://doi.org/10.1016/j.clinph.2010.12.039.CrossRefGoogle ScholarPubMed
Brunia, C. H., van Boxtel, G. J., & Böcker, K. B. (2012). Negative slow waves as indices of anticipation: The bereitschaftspotential, the contingent negative variation, and the stimulus-preceding negativity. In Luck, S. J. & Kappenman, E. S. (Eds.), The Oxford handbook of event-related potential components (pp. 189207). New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0108.Google Scholar
Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Münte, T. F., & Heldmann, M. (2016). Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 20512056. https://doi.org/10.1073/pnas.1518825113.CrossRefGoogle ScholarPubMed
Caldwell, H. K. (2017). Oxytocin and vasopressin: Powerful regulators of social behavior. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 23(5), 517528. https://doi.org/10.1177/1073858417708284.CrossRefGoogle ScholarPubMed
Caldwell, H. K., & Albers, H. E. (2004). Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Hormones and Behavior, 46(4), 444449. https://doi.org/10.1016/j.yhbeh.2004.04.006.CrossRefGoogle ScholarPubMed
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 132. https://doi.org/10.18637/jss.v076.i01.CrossRefGoogle Scholar
Cavanagh, J. F. (2015). Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times. NeuroImage, 110, 205216. https://doi.org/10.1016/j.neuroimage.2015.02.007.CrossRefGoogle ScholarPubMed
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414421. https://doi.org/10.1016/j.tics.2014.04.012.CrossRefGoogle ScholarPubMed
Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 31983209. https://doi.org/10.1016/j.neuroimage.2009.11.080.CrossRefGoogle ScholarPubMed
Cohen, M. X. (2011). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage, 55(3), 13731383. https://doi.org/10.1016/j.neuroimage.2010.12.072.CrossRefGoogle ScholarPubMed
Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35(2), 968978. https://doi.org/10.1016/j.neuroimage.2006.11.056.CrossRefGoogle ScholarPubMed
Crawley, D., Zhang, L., Jones, E. J., Ahmad, J., Oakley, B., & San Jose Caceres, A., … EU-AIMS LEAP group. (2020). Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group. PLoS Biology, 18(10), e3000908. https://doi.org/10.1371/journal.pbio.3000908.CrossRefGoogle ScholarPubMed
Crockett, M. J., Kurth-Nelson, Z., Siegel, J. Z., Dayan, P., & Dolan, R. J. (2014). Harm to others outweighs harm to self in moral decision making. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 1732017325. https://doi.org/10.1073/pnas.1408988111.CrossRefGoogle ScholarPubMed
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 921. https://doi.org/10.1016/j.jneumeth.2003.10.009.CrossRefGoogle ScholarPubMed
Dhuria, S. V, Hanson, L. R., & Frey, W. H., 2nd (2010). Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. Journal of Pharmaceutical Sciences, 99(4), 16541673. https://doi.org/10.1002/jps.21924.CrossRefGoogle Scholar
Dodt, C., Pietrowsky, R., Sewing, A., Zabel, A., Fehm, H. L., & Born, J. (1994). Effects of vasopressin on event-related potential indicators of cognitive stimulus processing in young and old humans. Journals of Gerontology, 49(4), M183M188. https://doi.org/10.1093/geronj/49.4.M183.CrossRefGoogle Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/bf03193146.CrossRefGoogle ScholarPubMed
Fehr, E., & Fischbacher, U. (2003). The nature of human altruism. Nature, 425(6960), 785791. https://doi.org/10.1038/nature02043.CrossRefGoogle ScholarPubMed
Feng, C., Hackett, P. D., DeMarco, A. C., Chen, X., Stair, S., Haroon, E., … Rilling, J. K. (2015). Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging and Behavior, 9(4), 754764. https://doi.org/10.1007/s11682-014-9333-9.CrossRefGoogle ScholarPubMed
Feng, C., Qin, L., Luo, Y., & Xu, P. (2020). Intranasal vasopressin expedites dishonesty in women. Hormones and Behavior, 126, 104843. https://doi.org/10.1016/j.yhbeh.2020.104843.CrossRefGoogle ScholarPubMed
Fiske, S. T., & Taylor, S. E. (2013). Social cognition: From brains to culture. Los Angeles: Sage Publications.10.4135/9781446286395CrossRefGoogle Scholar
Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 19401943. https://doi.org/10.1126/science.1102941.CrossRefGoogle ScholarPubMed
Galea, J. M., Mallia, E., Rothwell, J., & Diedrichsen, J. (2015). The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 18(4), 597602. https://doi.org/10.1038/nn.3956.CrossRefGoogle ScholarPubMed
Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385390. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x.CrossRefGoogle Scholar
Gobrogge, K. L., Liu, Y., Young, L. J., & Wang, Z. (2009). Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 1914419149. https://doi.org/10.1073/pnas.0908620106.CrossRefGoogle Scholar
Hackley, S. A., Valle-Inclán, F., Masaki, H., & Hebert, K. (2014). Stimulus-preceding negativity (SPN) and attention to rewards. In Mangun, G. R. (Ed.), Cognitive electrophysiology of attention: Signals of the mind (pp. 216225). San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-398451-7.00017-8.CrossRefGoogle Scholar
Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159168. https://doi.org/10.1016/j.neuroimage.2013.08.028.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679709. https://doi.org/10.1037/0033-295X.109.4.679.CrossRefGoogle ScholarPubMed
Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective and Behavioral Neuroscience, 9(1), 5970. https://doi.org/10.3758/CABN.9.1.59.CrossRefGoogle Scholar
Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14(18), 24812484. https://doi.org/10.1097/00001756-200312190-00037.CrossRefGoogle ScholarPubMed
Hu, L., & Zhang, Z. (2019). EEG signal processing and feature extraction. Singapore: Springer Singapore.10.1007/978-981-13-9113-2CrossRefGoogle Scholar
Hu, X., Xu, Z., & Mai, X. (2017). Social value orientation modulates the processing of outcome evaluation involving others. Social Cognitive and Affective Neuroscience, 12(11), 17301739. https://doi.org/10.1093/scan/nsx102.CrossRefGoogle ScholarPubMed
Jennings, J. R., & Wood, C. C. (1976). The ɛ-adjustment procedure for repeated-measures analyses of variance. Psychophysiology, 13(3), 277278. https://doi.org/10.1111/j.1469-8986.1976.tb00116.x.CrossRefGoogle Scholar
Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzefovsky, F., Cohen, L., … Ebstein, R. P. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7(3), 266275. https://doi.org/10.1111/j.1601-183X.2007.00341.x.Google Scholar
Liao, Z., Huang, L., & Luo, S. (2021). Intranasal oxytocin decreases self-oriented learning. Psychopharmacology, 238(2), 461474. https://doi.org/10.1007/s00213-020-05694-7.CrossRefGoogle ScholarPubMed
Liu, J., Gu, R., Liao, C., Lu, J., Fang, Y., Xu, P., … Cui, F. (2020). The neural mechanism of the social framing effect: Evidence from fMRI and tDCS studies. Journal of Neuroscience, 40(18), 36463656. https://doi.org/10.1523/JNEUROSCI.1385-19.2020.CrossRefGoogle ScholarPubMed
Liu, Y., Curtis, J. T., & Wang, Z. (2001). Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behavioral Neuroscience, 115(4), 910919. https://doi.org/10.1037/0735-7044.115.4.910.CrossRefGoogle ScholarPubMed
Lock, M. P. (2008). Treatment of antisocial personality disorder. The British Journal of Psychiatry, 193(5), 426. https://doi.org/10.1192/bjp.193.5.426.CrossRefGoogle ScholarPubMed
Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences of the United States of America, 113(35), 97639768. https://doi.org/10.1073/pnas.1603198113.CrossRefGoogle ScholarPubMed
Lockwood, P. L., Klein-Flügge, M. C., Abdurahman, A., & Crockett, M. J. (2020). Model-free decision making is prioritized when learning to avoid harming others. Proceedings of the National Academy of Sciences of the United States of America, 117(44), 2771927730. https://doi.org/10.1073/pnas.2010890117.CrossRefGoogle ScholarPubMed
Martins, D., Lockwood, P., Cutler, J., Moran, R., & Paloyelis, Y. (2022). Oxytocin modulates neurocomputational mechanisms underlying prosocial reinforcement learning. Progress in Neurobiology, 213, 102253. https://doi.org/10.1016/j.pneurobio.2022.102253.CrossRefGoogle ScholarPubMed
Masaki, H., Takeuchi, S., Gehring, W. J., Takasawa, N., & Yamazaki, K. (2006). Affective-motivational influences on feedback-related ERPs in a gambling task. Brain Research, 1105(1), 110121. https://doi.org/10.1016/j.brainres.2006.01.022.CrossRefGoogle Scholar
Masaki, H., Yamazaki, K., & Hackley, S. A. (2010). Stimulus-preceding negativity is modulated by action–outcome contingency. NeuroReport, 21(4), 277281. https://doi.org/10.1097/WNR.0b013e3283360bc3.CrossRefGoogle ScholarPubMed
Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a ‘generic’ neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788798. https://doi.org/10.1162/jocn.1997.9.6.788.CrossRefGoogle Scholar
Morís, J., Luque, D., & Rodríguez-Fornells, A. (2013). Learning-induced modulations of the stimulus-preceding negativity. Psychophysiology, 50(9), 931939. https://doi.org/10.1111/psyp.12073.CrossRefGoogle ScholarPubMed
Moskowitz, G. B. (2005). Social cognition: Understanding self and others. New York: Guilford Press.Google Scholar
Neto, M. L., Antunes, M., Lopes, M., Ferreira, D., Rilling, J., & Prata, D. (2020). Oxytocin and vasopressin modulation of prisoner's dilemma strategies. Journal of Psychopharmacology, 34(8), 891900. https://doi.org/10.1177/0269881120913145.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510532. https://doi.org/10.1037/0033-2909.131.4.510.CrossRefGoogle ScholarPubMed
Nishina, K., Takagishi, H., Takahashi, H., Sakagami, M., & Inoue-Murayama, M. (2019). Association of polymorphism of arginine-vasopressin receptor 1A (AVPR1A) gene with trust and reciprocity. Frontiers in Human Neuroscience, 13, 230. https://doi.org/10.3389/fnhum.2019.00230.CrossRefGoogle ScholarPubMed
Osinsky, R., Mussel, P., & Hewig, J. (2012). Feedback-related potentials are sensitive to sequential order of decision outcomes in a gambling task. Psychophysiology, 49(12), 15791589. https://doi.org/10.1111/j.1469-8986.2012.01473.x.CrossRefGoogle Scholar
Osinsky, R., Walter, H., & Hewig, J. (2014). What is and what could have been: An ERP study on counterfactual comparisons. Psychophysiology, 51(8), 773781. https://doi.org/10.1111/psyp.12221.CrossRefGoogle Scholar
Patel, N., Grillon, C., Pavletic, N., Rosen, D., Pine, D. S., & Ernst, M. (2015). Oxytocin and vasopressin modulate risk-taking. Physiology and Behavior, 139, 254260. https://doi.org/10.1016/j.physbeh.2014.11.018.CrossRefGoogle ScholarPubMed
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532552. https://doi.org/10.1037/0033-295X.87.6.532.CrossRefGoogle Scholar
Pfabigan, D. M., Alexopoulos, J., Bauer, H., & Sailer, U. (2011). Manipulation of feedback expectancy and valence induces negative and positive reward prediction error signals manifest in event-related brain potentials. Psychophysiology, 48(5), 656664. https://doi.org/10.1111/j.1469-8986.2010.01136.x.CrossRefGoogle ScholarPubMed
Pitkow, L. J., Sharer, C. A., Ren, X., Insel, T. R., Terwilliger, E. F., & Young, L. J. (2001). Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. Journal of Neuroscience, 21(18), 73927396. https://doi.org/10.1523/jneurosci.21-18-07392.2001.CrossRefGoogle ScholarPubMed
Pulcu, E., & Browning, M. (2017). Affective bias as a rational response to the statistics of rewards and punishments. eLife, 6, e27879. https://doi.org/10.7554/eLife.27879.CrossRefGoogle Scholar
Qi, Y., Wu, H., Raiha, S., & Liu, X. (2018). Social value orientation modulates context-based social comparison preference in the outcome evaluation: An ERP study. Neuropsychologia, 112, 135144. https://doi.org/10.1016/j.neuropsychologia.2018.02.028.CrossRefGoogle ScholarPubMed
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 6499). New York: Appleton-Century-Crofts.Google Scholar
Rilling, J. K., DeMarco, A. C., Hackett, P. D., Chen, X., Gautam, P., Stair, S., … Pagnoni, G. (2014). Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology, 39, 237248. https://doi.org/10.1016/j.psyneuen.2013.09.022.CrossRefGoogle ScholarPubMed
Rodrigues, J., Ulrich, N., & Hewig, J. (2015). A neural signature of fairness in altruism: A game of theta?. Social Neuroscience, 10(2), 192205. https://doi.org/10.1080/17470919.2014.977401.CrossRefGoogle ScholarPubMed
Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296320. https://doi.org/10.1207/S15327957PSPR0504_2.CrossRefGoogle Scholar
Sharot, T., & Garrett, N. (2016). Forming beliefs: Why valence matters. Trends in Cognitive Sciences, 20(1), 2533. https://doi.org/10.1016/j.tics.2015.11.002.CrossRefGoogle ScholarPubMed
Shin, Y. S., & Niv, Y. (2021). Biased evaluations emerge from inferring hidden causes. Nature Human Behaviour, 5(9), 11801189. https://doi.org/10.1038/s41562-021-01065-0.CrossRefGoogle ScholarPubMed
Song, Z., Larkin, T. E., Malley, M. O., & Albers, H. E. (2016). Oxytocin (OT) and arginine-vasopressin (AVP) act on OT receptors and not AVP V1a receptors to enhance social recognition in adult Syrian hamsters (Mesocricetus auratus). Hormones and Behavior, 81, 2027. https://doi.org/10.1016/j.yhbeh.2016.02.004.CrossRefGoogle Scholar
Song, Z., McCann, K. E., McNeill, J. K., 4th, Larkin, T. E., 2nd, Huhman, K. L., & Albers, H. E. (2014). Oxytocin induces social communication by activating arginine-vasopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology, 50, 1419. https://doi.org/10.1016/j.psyneuen.2014.08.005.CrossRefGoogle Scholar
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. London: MIT Press.Google Scholar
Team, S. D. (2016). RStan: The R interface to Stan. R Package Version, 2(1), 522.Google Scholar
Tendler, A., & Wagner, S. (2015). Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory. eLife, 4, e03614. https://doi.org/10.7554/eLife.03614.CrossRefGoogle Scholar
Thompson, R. R., George, K., Walton, J. C., Orr, S. P., & Benson, J. (2006). Sex-specific influences of vasopressin on human social communication. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 78897894. https://doi.org/10.1073/pnas.0600406103.CrossRefGoogle ScholarPubMed
Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A reference-dependent model. The Quarterly Journal of Economics, 106(4), 10391061. https://doi.org/10.2307/2937956.CrossRefGoogle Scholar
Uzefovsky, F., Shalev, I., Israel, S., Knafo, A., & Ebstein, R. P. (2012). Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology, 37(4), 576580. https://doi.org/10.1016/j.psyneuen.2011.07.018.CrossRefGoogle ScholarPubMed
van den Berg, P., Molleman, L., & Weissing, F. J. (2015). Focus on the success of others leads to selfish behavior. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 29122917. https://doi.org/10.1073/pnas.1417203112.CrossRefGoogle ScholarPubMed
van Dijk, E., & Wilke, H. (2000). Decision-induced focusing in social dilemmas: Give-some, keep-some, take-some, and leave-some dilemmas. Journal of Personality and Social Psychology, 78(1), 92104. https://doi.org/10.1037/0022-35I4.78.1.92.CrossRefGoogle ScholarPubMed
Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 18701884. https://doi.org/10.1016/j.neubiorev.2012.05.008.CrossRefGoogle ScholarPubMed
Wang, J., Qin, W., Liu, F., Liu, B., Zhou, Y., Jiang, T., & Yu, C. (2016). Sex-specific mediation effect of the right fusiform face area volume on the association between variants in repeat length of AVPR1A RS3 and altruistic behavior in healthy adults. Human Brain Mapping, 37(7), 27002709. https://doi.org/10.1002/hbm.23203.CrossRefGoogle ScholarPubMed
Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547. https://doi.org/10.7554/eLife.49547.CrossRefGoogle ScholarPubMed
Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365(6446), 545548. https://doi.org/10.1038/365545a0.CrossRefGoogle ScholarPubMed
Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15(5), 535544. https://doi.org/10.1093/cercor/bhh153.CrossRefGoogle ScholarPubMed
Zheng, Y., Li, Q., Wang, K., Wu, H., & Liu, X. (2015). Contextual valence modulates the neural dynamics of risk processing. Psychophysiology, 52(7), 895904. https://doi.org/10.1111/psyp.12415.CrossRefGoogle ScholarPubMed
Zink, C. F., Kempf, L., Hakimi, S., Rainey, C. A., Stein, J. L., & Meyer-Lindenberg, A. (2011). Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans. Translational Psychiatry, 1(4), e3. https://doi.org/10.1038/tp.2011.2.CrossRefGoogle ScholarPubMed
Supplementary material: File

Deng et al. supplementary material

Deng et al. supplementary material

Download Deng et al. supplementary material(File)
File 14.1 MB