Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:43:58.328Z Has data issue: false hasContentIssue false

Applying dimensional psychopathology: transdiagnostic prediction of executive cognition using brain connectivity and inflammatory biomarkers

Published online by Cambridge University Press:  10 May 2022

Yange Wei
Affiliation:
Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Fay Y. Womer
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
Kaijin Sun
Affiliation:
Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
Yue Zhu
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Dandan Sun
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Jia Duan
Affiliation:
Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Ran Zhang
Affiliation:
Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Shengnan Wei
Affiliation:
Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Xiaowei Jiang
Affiliation:
Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Yanbo Zhang
Affiliation:
Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
Yanqing Tang
Affiliation:
Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
Xizhe Zhang
Affiliation:
School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 210001, China
Fei Wang*
Affiliation:
Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
*
Author for correspondence: Fei Wang, E-mail: fei.wang@yale.edu

Abstract

Background

The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs.

Methods

This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed.

Results

Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1β and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1β mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1β and ReHo-IL-6.

Conclusions

Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

They are co-corresponding authors.

References

Barch, D. M., & Sheffield, J. M. (2014). Cognitive impairments in psychotic disorders: Common mechanisms and measurement. World Psychiatry, 13(3), 224232. doi: 10.1002/wps.20145CrossRefGoogle ScholarPubMed
Bartzokis, G. (2012). Neuroglial pharmacology: Myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology, 62(7), 21372153. doi: 10.1016/j.neuropharm.2012.01.015CrossRefGoogle ScholarPubMed
Bora, E., Yucel, M., & Pantelis, C. (2009). Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: Meta-analytic study. British Journal of Psychiatry, 195(6), 475482. doi: 10.1192/bjp.bp.108.055731CrossRefGoogle ScholarPubMed
Bosia, M., Bechi, M., Bosinelli, F., Politi, E., Buonocore, M., Spangaro, M., … Cavallaro, R. (2019). From cognitive and clinical substrates to functional profiles: Disentangling heterogeneity in schizophrenia. Psychiatry Research, 271, 446453. doi: 10.1016/j.psychres.2018.12.026CrossRefGoogle ScholarPubMed
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74(6), 9901004. doi: 10.1016/j.neuron.2012.06.002CrossRefGoogle Scholar
Chai, X. J., Whitfield-Gabrieli, S., Shinn, A. K., Gabrieli, J. D., Nieto Castañón, A., McCarthy, J. M., … Ongür, D. (2011). Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology, 36(10), 20092017. doi: 10.1038/npp.2011.88CrossRefGoogle ScholarPubMed
Clark, L., Chamberlain, S. R., & Sahakian, B. J. (2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32, 5774. doi: 10.1146/annurev.neuro.31.060407.125618CrossRefGoogle ScholarPubMed
Deverman, B. E., & Patterson, P. H. (2009). Cytokines and CNS development. Neuron, 64(1), 6178. doi: 10.1016/j.neuron.2009.09.002CrossRefGoogle ScholarPubMed
D'Mello, C., & Swain, M. G. (2017). Immune-to-brain communication pathways in inflammation-associated sickness and depression. Current Topics in Behavioral Neurosciences, 31, 7394. doi: 10.1007/7854_2016_37CrossRefGoogle ScholarPubMed
Edwards, B. G., Barch, D. M., & Braver, T. S. (2010). Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4, 32. doi: 10.3389/fnhum.2010.00032Google ScholarPubMed
Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21(10), 13581365. doi: 10.1038/mp.2015.168CrossRefGoogle ScholarPubMed
Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research. Brain Research Reviews, 39(1), 2954.CrossRefGoogle ScholarPubMed
Fineberg, A. M., & Ellman, L. M. (2013). Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biological Psychiatry, 73(10), 951966. doi: 10.1016/j.biopsych.2013.01.001CrossRefGoogle ScholarPubMed
Frodl, T., & Amico, F. (2014). Is there an association between peripheral immune markers and structural/functional neuroimaging findings? Progress in Neuro-psychopharmacology & Biological Psychiatry, 48, 295303. doi: 10.1016/j.pnpbp.2012.12.013CrossRefGoogle ScholarPubMed
Galletly, C. A., Clark, C. R., & McFarlane, A. C. (1996). Artificial neural networks: A prospective tool for the analysis of psychiatric disorders. Journal of Psychiatry & Neuroscience, 21(4), 239247.Google ScholarPubMed
Gardizi, E., King, J. P., McNeely, H. E., & Vaz, S. M. (2019). Comparability of the WCST and WCST-64 in the assessment of first-episode psychosis. Psychological Assessment, 31(2), 271276. doi: 10.1037/pas0000670CrossRefGoogle ScholarPubMed
Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., … Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305315. doi: 10.1001/jamapsychiatry.2014.2206CrossRefGoogle ScholarPubMed
Ji, L., Meda, S. A., Tamminga, C. A., Clementz, B. A., Keshavan, M. S., Sweeney, J. A., … Pearlson, G. D. (2020). Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches. Schizophrenia Research, 215, 430438. doi: 10.1016/j.schres.2019.07.015CrossRefGoogle ScholarPubMed
Jiang, L., Xu, T., He, Y., Hou, X. H., Wang, J., Cao, X. Y., … Zuo, X. N. (2015). Toward neurobiological characterization of functional homogeneity in the human cortex: Regional variation, morphological association and functional covariance network organization. Brain Structure & Function, 220(5), 24852507. doi: 10.1007/s00429-014-0795-8CrossRefGoogle ScholarPubMed
Jiang, L., & Zuo, X. N. (2016). Regional homogeneity: A multimodal, multiscale neuroimaging marker of the human connectome. The Neuroscientist, 22(5), 486505. doi: 10.1177/1073858415595004CrossRefGoogle ScholarPubMed
Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107128. doi: 10.1016/j.psychres.2005.09.013CrossRefGoogle ScholarPubMed
Kochunov, P., Coyle, T. R., Rowland, L. M., Jahanshad, N., Thompson, P. M., Kelly, S., … Hong, L. E. (2017). Association of white matter with core cognitive deficits in patients with schizophrenia. JAMA Psychiatry, 74(9), 958. doi: 10.1001/jamapsychiatry.2017.2228CrossRefGoogle ScholarPubMed
Kosger, F., Essizoglu, A., Baltacioglu, M., Ulkgun, N., & Yenilmez, C. (2015). Executive function in parents of patients with familial versus sporadic bipolar disorder. Comprehensive Psychiatry, 61, 3641. doi: 10.1016/j.comppsych.2015.05.013CrossRefGoogle ScholarPubMed
Krystal, J. H., & State, M. W. (2014). Psychiatric disorders: Diagnosis to therapy. Cell, 157(1), 201214. doi: 10.1016/j.cell.2014.02.042CrossRefGoogle ScholarPubMed
Lanillos, P., Oliva, D., Philippsen, A., Yamashita, Y., Nagai, Y., & Cheng, G. (2020). A review on neural network models of schizophrenia and autism spectrum disorder. Neural Networks, 122, 338363. doi: 10.1016/j.neunet.2019.10.014CrossRefGoogle ScholarPubMed
Latalova, K., Prasko, J., Diveky, T., & Velartova, H. (2011). Cognitive impairment in bipolar disorder. Biomedical Papers, 155(1), 1926. doi: 10.5507/bp.155.2011.003CrossRefGoogle ScholarPubMed
Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984994. doi: 10.1038/ng.2711Google ScholarPubMed
Lin, K., Shao, R., Wang, R., Lu, W., Zou, W., Chen, K., … So, K. F. (2019). Inflammation, brain structure and cognition interrelations among individuals with differential risks for bipolar disorder. Brain, Behavior, and Immunity, 83, 192199. doi: 10.1016/j.bbi.2019.10.010.CrossRefGoogle ScholarPubMed
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732741. doi: 10.1016/j.biopsych.2008.11.029CrossRefGoogle ScholarPubMed
Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18(2), 199209. doi: 10.1038/nn.3922.CrossRefGoogle Scholar
Nusslock, R., Brody, G. H., Armstrong, C. C., Carroll, A. L., Sweet, L. H., Yu, T., … Miller, G. E. (2019). Higher peripheral inflammatory signaling associated with lower resting-state functional brain connectivity in emotion regulation and central executive networks. Biological Psychiatry, 86(2), 153162. doi: 10.1016/j.biopsych.2019.03.968.CrossRefGoogle ScholarPubMed
Pape, K., Tamouza, R., Leboyer, M., & Zipp, F. (2019). Immunoneuropsychiatry – novel perspectives on brain disorders. Nature Reviews. Neurology, 15(6), 317328. doi: 10.1038/s41582-019-0174-4CrossRefGoogle ScholarPubMed
Perez-Iglesias, R., Tordesillas-Gutierrez, D., McGuire, P. K., Barker, G. J., Roiz-Santianez, R., Mata, I., … Crespo-Facorro, B. (2010). White matter integrity and cognitive impairment in first-episode psychosis. The American Journal of Psychiatry, 167(4), 451458. doi: 10.1176/appi.ajp.2009.09050716CrossRefGoogle ScholarPubMed
Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2014). Studying brain organization via spontaneous fMRI signal. Neuron, 84(4), 681696. doi: 10.1016/j.neuron.2014.09.007CrossRefGoogle ScholarPubMed
Price, R. B., & Duman, R. (2020). Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Molecular Psychiatry, 25(3), 530543. doi: 10.1038/s41380-019-0615-xCrossRefGoogle ScholarPubMed
Rady, A., Elsheshai, A., Abou El Wafa, H., & Elkholy, O. (2012). WCST performance in schizophrenia and severe depression with psychotic features. International Scholarly Research Network Psychiatry, 2012, 373748. doi: 10.5402/2012/373748Google ScholarPubMed
Rudolph, M. D., Graham, A. M., Feczko, E., Miranda-Dominguez, O., Rasmussen, J. M., Nardos, R., … Fair, D. A. (2018). Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nature Neuroscience, 21(5), 765772. doi: 10.1038/s41593-018-0128-yCrossRefGoogle ScholarPubMed
Sheffield, J. M., Kandala, S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., Sweeney, J. A., … Barch, D. M. (2017). Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry, 74(6), 605. doi: 10.1001/jamapsychiatry.2017.0669CrossRefGoogle ScholarPubMed
Trivedi, M. H., & Greer, T. L. (2014). Cognitive dysfunction in unipolar depression: Implications for treatment. Journal of Affective Disorders, 152–154, 1927. doi: 10.1016/j.jad.2013.09.012CrossRefGoogle ScholarPubMed
Wei, Y., Chang, M., Womer, F. Y., Zhou, Q., Yin, Z., Wei, S., … Wang, F. (2018). Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. Journal of Affective Disorders, 236, 266273. doi: 10.1016/j.jad.2018.04.069CrossRefGoogle ScholarPubMed
Wei, Y. G., Duan, J., Womer, F. Y., Zhu, Y., Yin, Z., Cui, L., … Wang, F. (2020). Applying dimensional psychopathology: Transdiagnostic associations among regional homogeneity, leptin and depressive symptoms. Translational Psychiatry, 10(1), 248. doi: 10.1038/s41398-020-00932-0CrossRefGoogle ScholarPubMed
Wise, T., Radua, J., Nortje, G., Cleare, A. J., Young, A. H., & Arnone, D. (2016). Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biological Psychiatry, 79(4), 293302. doi: 10.1016/j.biopsych.2015.03.004CrossRefGoogle ScholarPubMed
Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., … Milham, M. P. (2013). Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space. Neuroimage, 65, 374386. doi: 10.1016/j.neuroimage.2012.10.017CrossRefGoogle ScholarPubMed
Supplementary material: File

Wei et al. supplementary material

Wei et al. supplementary material

Download Wei et al. supplementary material(File)
File 7 MB