Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T15:34:08.520Z Has data issue: false hasContentIssue false

An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model

Published online by Cambridge University Press:  01 January 2025

Michael J. Brusco*
Affiliation:
Florida State University
Hans-Friedrich Köhn
Affiliation:
University of Illinois at Urbana-Champaign
Douglas Steinley
Affiliation:
University of Missouri
*
Correspondence should be made to Michael J. Brusco, Florida State University, 821 Academic Way, Tallahassee, FL 32306-1110 USA. Email: mbrusco@fsu.edu

Abstract

The monotone homogeneity model (MHM—also known as the unidimensional monotone latent variable model) is a nonparametric IRT formulation that provides the underpinning for partitioning a collection of dichotomous items to form scales. Ellis (Psychometrika 79:303–316, 2014, doi:10.1007/s11336-013-9341-5) has recently derived inequalities that are implied by the MHM, yet require only the bivariate (inter-item) correlations. In this paper, we incorporate these inequalities within a mathematical programming formulation for partitioning a set of dichotomous scale items. The objective criterion of the partitioning model is to produce clusters of maximum cardinality. The formulation is a binary integer linear program that can be solved exactly using commercial mathematical programming software. However, we have also developed a standalone branch-and-bound algorithm that produces globally optimal solutions. Simulation results and a numerical example are provided to demonstrate the proposed method.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacci, S., Bartolucci, F., & Gnaldi, M. (2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communication in Statistics, 43, 787800.CrossRefGoogle Scholar
Balas, E. (1965). An additive algorithm for solving linear programs with zero-one variables. Operations Research, 13, 517546.CrossRefGoogle Scholar
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141157.CrossRefGoogle Scholar
Bartolucci, F., Bacci, S., & Gnaldi, M. (2014). MultiLCIRT: An R package for multidimensional latent class item response models. Computational Statistics and Data Analysis, 71, 971985.CrossRefGoogle Scholar
Bartolucci, F., Montanari, G.E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77, 782802.CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their uses in inferring an examinee’s ability. In Lord, F.M., & Novick, R.M. (Eds.), Statistical theories of mental test scores (pp. 397479). Reading, MA: Addison-Wesley.Google Scholar
Brusco, M.J., & Stahl, S. (2005). Branch-and-bound applications in combinatorial data analysis. New York, NY: Springer.Google Scholar
Brusco, M.J., & Stahl, S. (2007). An algorithm for extracting maximum cardinality subsets with perfect dominance or anti-Robinson structures. British Journal of Mathematical and Statistical Psychology, 60, 333351.CrossRefGoogle ScholarPubMed
Clapham, C. (1996). The concise Oxford dictionary of mathematics. New York, NY: Oxford University Press.Google Scholar
D’Angelo, G. M., Luo, J., & Xiong, C. (2012). Missing data methods for partial correlations. Journal of Biometrics & Biostatistics, 3(8). doi:10.4172/2155-6180.1000155.CrossRefGoogle Scholar
Dean, N., & Raftery, A.E. (2010). Latent class analysis variable selection. Annals of the Institute of Statistical Mathematics, 62, 1135.CrossRefGoogle ScholarPubMed
Ellis, J. (2014). An inequality for correlations in unidimensional monotone latent variable models for binary variables. Psychometrika, 79, 303316.CrossRefGoogle ScholarPubMed
Fisher, R.A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 332.Google Scholar
Fisher, R.A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329332.Google Scholar
Hessen, D.J. (2005). Constant latent odds-ratios models and Mantzel–Haenszel null hypothesis. Psychometrika, 70, 497516.CrossRefGoogle Scholar
Junker, B.W., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 22, 211220.CrossRefGoogle Scholar
Klein, G., & Aronson, J.E. (1991). Optimal clustering: A model and method. Naval Research Logistics, 38, 447461.3.0.CO;2-0>CrossRefGoogle Scholar
Land, A.H., & Doig, A. (1960). An automatic method of solving discrete programming problems. Econometrica, 28, 497520.CrossRefGoogle Scholar
Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of "scale analysis" and factor analysis. Psychological Bulletin, 45, 507530.CrossRefGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis. The Hauge/Berlin: Mouton/DeGruyter.CrossRefGoogle Scholar
Molenaar, I. W., & Sijtsma, K. (2000). User’s manual for MSP5 for Windows. Groningen: iecProGAMMA.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen and Lydische.Google Scholar
Reckase, M.D. (2009). Multidimensional item response theory. New York, NY: Springer.CrossRefGoogle Scholar
Roussos, L.A., Stout, W.F., & Marden, J.I. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 130.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph No. 17.CrossRefGoogle Scholar
Sijtsma, K., & Molenaar, I.W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Straat, J.H., Van der Ark, L.A., & Sijtsma, K. (2013). Comparing optimization algorithms for item selection in Mokken scale analysis. Journal of Classification, 30, 7599.CrossRefGoogle Scholar
Steinley, D., & Brusco, M.J. (2008). Selection of variables in cluster analysis: An empirical comparison of eight procedures. Psychometrika, 73, 125144.CrossRefGoogle Scholar
Van Abswoude, A.A.H., Van der Ark, L.A., & Sijtsma, K. (2004). A comparative study of test data dimensionality assessment procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 324.CrossRefGoogle Scholar
Van der Ark, L.A. (2007). Mokken scale analysis in R (version 2.4). Journal of Statistical Software, 20, 119.Google Scholar
Van der Ark, L.A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48, 127.Google Scholar
Van der Ark, L.A., Croon, M.A., & Sijtsma, K. (2008). Mokken scale analysis for dichotomous items using marginal models. Psychometrika, 73, 183208.CrossRefGoogle ScholarPubMed
Van der Ark, L.A., & Sijtsma, K. (2005). The effect of missing data imputation on Mokken scale analysis. In Van der Ark, L.A., Croon, M.A., & Sijtsma, K. (Eds.), New developments in categorical data analysis for the social and behavioral sciences (pp. 147166). Mahwah, NJ: Lawrence Erlbaum.CrossRefGoogle Scholar
Verweij, A.C., Sijtsma, K., & Koops, W. (1996). A Mokken scale for transitive reasoning suited for longitudinal research. International Journal of Behavioral Development, 23, 241264.CrossRefGoogle Scholar
Zhang, J., & Stout, W.F. (1999). The theoretical DETECT index of dimensionality and its application to simple structure. Psychometrika, 64, 213249.CrossRefGoogle Scholar