Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T19:29:46.981Z Has data issue: false hasContentIssue false

Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables

Published online by Cambridge University Press:  01 January 2025

Myrsini Katsikatsou*
Affiliation:
London School of Economics
Irini Moustaki
Affiliation:
London School of Economics
*
Correspondence should be made to Myrsini Katsikatsou, Department of Statistics, London School of Economics, Houghton Street, London, WC2A 2AE UK. Email: m.katsikatsou@lse.ac.uk

Abstract

Correlated multivariate ordinal data can be analysed with structural equation models. Parameter estimation has been tackled in the literature using limited-information methods including three-stage least squares and pseudo-likelihood estimation methods such as pairwise maximum likelihood estimation. In this paper, two likelihood ratio test statistics and their asymptotic distributions are derived for testing overall goodness-of-fit and nested models, respectively, under the estimation framework of pairwise maximum likelihood estimation. Simulation results show a satisfactory performance of type I error and power for the proposed test statistics and also suggest that the performance of the proposed test statistics is similar to that of the test statistics derived under the three-stage diagonally weighted and unweighted least squares. Furthermore, the corresponding, under the pairwise framework, model selection criteria, AIC and BIC, show satisfactory results in selecting the right model in our simulation examples. The derivation of the likelihood ratio test statistics and model selection criteria under the pairwise framework together with pairwise estimation provide a flexible framework for fitting and testing structural equation models for ordinal as well as for other types of data. The test statistics derived and the model selection criteria are used on data on ‘trust in the police’ selected from the 2010 European Social Survey. The proposed test statistics and the model selection criteria have been implemented in the R package lavaan.

Type
Article
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi: 10.1007/s11336-016-9523-z) contains supplementary material, which is available to authorized users.

References

Agresti, A. Analysis of ordinal categorical data, 2New York: Wiley.CrossRefGoogle Scholar
Ansari, A., Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65 (4), 475496.CrossRefGoogle Scholar
Ansari, A., Jedidi, K. (2002). Heterogeneous factor analysis models: A Bayesian approach. Psychometrika, 67 (1), 4978.CrossRefGoogle Scholar
Arminger, G., Küsters, U., Langeheine, I. R., Rost, J. (1988). (2011). Latent trait models with indicators of mixed measurement level. Latent trait and latent class models, New York: Plenum.Google Scholar
Asparouhov, T., & Muthén, B. (2006). Robust chi-square difference testing with mean and variance adjusted test statistics. Mplus Web Notes: No. 10.Google Scholar
Asparouhov, T., & Muthén, B. (2010). Simple second order chi-square correction.Google Scholar
Bartholomew, D., Knott, M., Moustaki, I. Latent variable models and factor analysis: A unified approach, 3New York: Wiley.CrossRefGoogle Scholar
Bellio, R., Varin, C. (2005). A pairwise likelihood approach to generalized linear models with crossed random effects. Statistical Modelling, 5, 217227.CrossRefGoogle Scholar
Bentler, P. M. (2006). EQS 6 Structural Equations Program Manual.Google Scholar
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of Royal Statistical Society Series B, 36, 192236.CrossRefGoogle Scholar
Bhat, C. R., Varin, C., Ferdous, N., William Greene, RCH (2010). (2006). Maximum simulated likelihood methods and applications. Advances in Econometrics, Bingley: Emerald Group Publishing. 65106.Google Scholar
Bollen, K., Curran, P. J. Latent curve models: A structural equation perspective, New York: Wiley.Google Scholar
De Leon, A. R. (2005). Pairwise likelihood approach to grouped continuous model and its extension. Statistics & Probability Letters, 75, 4957.CrossRefGoogle Scholar
Efron, B., Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika, 65 (3), 457487.CrossRefGoogle Scholar
ESS Round 5: European Social Survey: ESS-5 Documentation Report. Edition 3.2 (2014). Bergen, European Social Survey Data Archive, Norwegian Social Science Data Services.Google Scholar
ESS Round 5: European Social Survey Round 5 Data. Data file edition 3.2 (2010). Norwegian Social Science Data Services. Norway, Data Archive and distributor of ESS data.Google Scholar
Fan, W., Hancock, G. R. (2012). Robust means modeling: An alternative for hypothesis testing of independent means under variance heterogeneity and nonnormality. Journal of Educational and Behavioral Statistics, 37, 137156.CrossRefGoogle Scholar
Feddag, M.- L., Bacci, S. (2009). Pairwise likelihood for the longitudinal mixed Rasch model. Computational Statistics and Data Analysis, 53, 10271037.CrossRefGoogle Scholar
Fieuws, S., Verbeke, G. (2006). Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics, 62, 424431.CrossRefGoogle ScholarPubMed
Gao, X., Song, P. X. (2010). Composite likelihood Bayesian information criteria for model selection in high dimensional data. Journal of the American Statistical Association, 105 (492), 15311540.CrossRefGoogle Scholar
Heagerty, P. J., Lele, S. (1998). A composite likelihood approach to binary spatial data. Journal of the American Statistical Association, 93, 10991111.CrossRefGoogle Scholar
Jackson, J., Hough, M., Bradford, B., Hohl, K. & Kuha, J. (2012). Policing by consent: Topline results (UK) from Round 5 of the European social survey. ESS Country Specific Topline Results Series 1.Google Scholar
Joe, H., Lee, Y. (2009). On weighting of bivariate margins in pairwise likelihood. Journal of Multivariate Analysis, 100, 670685.CrossRefGoogle Scholar
Jöreskog, K., Yang, F., Marcoulides, G., Schumacker, R. (1996). Nonlinear structural equation models: The Kenny–Judd model with interaction effects. Advanced structural equation modeling: Issues and techniques, Mahwah, NJ: Lawrence Erlbaum Associates. 5788.Google Scholar
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183202.CrossRefGoogle Scholar
Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426.CrossRefGoogle Scholar
Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality and Quantity, 24, 387404.CrossRefGoogle Scholar
Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381389.CrossRefGoogle Scholar
Jöreskog, K. G. (2002). Structural equation modeling with ordinal variables using LISREL.Google Scholar
Jöreskog, K. G., Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347387.CrossRefGoogle ScholarPubMed
Jöreskog, K. G. Sörbom, D. (1996). LISREL 8 User’s Reference Guide.Google Scholar
Katsikatsou, M. (2013). Composite Likelihood estimation for latent variable models with ordinal and continuous or ranking variables. Unpublished doctoral dissertation, Uppsala University, Uppsala.Google Scholar
Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics and Data Analysis, 56, 42434258.CrossRefGoogle Scholar
Kenward, M. G., Molenberghs, G. (1998). (2007). Likelihood based frequentist inference when data are missing at random. Statistical Science, 13 (3), 236247.CrossRefGoogle Scholar
Lee, S.- Y. Structural equation modeling: A Bayesian approach, New York: Wiley.Google Scholar
Lee, S.- Y., Poon, W.- Y., Bentler, P. (1990). Full maximum likelihood analysis of structural equation models with polytomous variables. Statistics and Probability Letters, 9, 9197.CrossRefGoogle Scholar
Lee, S.- Y., Poon, W.- Y., Bentler, P. M. (1990). A three-stage estimation procedure for structural equation models with polytomous variables. Psychometrika, 55, 4551.CrossRefGoogle Scholar
Lee, S.- Y., Poon, W.- Y., Bentler, P. M. (1992). Structural equation models with continuous and polytomous variables. Psychometrika, 57, 89105.CrossRefGoogle Scholar
Lele, S. R. (2006). Sampling variability and estimates of density dependence: A composite likelihood approach. Ecology, 87, 189202.CrossRefGoogle ScholarPubMed
Lele, S. R., Taper, M. L. (2002). A composite likelihood approach to (co)variance components estimation. Journal of Statistical Planning and Inference, 103, 117135.CrossRefGoogle Scholar
Lindsay, B. (1988). Composite likelihood methods. Contemporary Mathematics, 80, 221239.CrossRefGoogle Scholar
Liu, J. (2007). Multivariate ordinal data analysis with pairwise likelihood and its extension to SEM. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
Magnus, J. (1978). The moments of products of quadratic forms in normal variables (Technical Repot No. AE4/78). Institute of Actuarial Science and Econometrics, Amsterdam University.Google Scholar
Maydeu-Olivares, A., Joe, H. (2005). Limited- and full-information estimation and goodness-of-fit testing in 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n$$\end{document} contingency tables: A unified approach. Journal of the American Statistical Association, 100, 10091020.CrossRefGoogle Scholar
Maydeu-Olivares, A., Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71 (4), 713732.CrossRefGoogle Scholar
Millsap, E., Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39 (3), 479515.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered, categorical, and continuous latent variables indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthén, B. (1989). Multi-group structural modelling with non-normal continuous variables. British Journal of Mathematical and Statistical Psychology, 42, 5562.CrossRefGoogle Scholar
Muthén, B., Bollen, K., Long, J. (1993). Goodness of fit with categorical and other nonnormal variables. Testing structural equation models, Newbury Park: Sage Publications. 205234.Google Scholar
Muthén, B., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Notes 4.Google Scholar
Muthén, B., du Toit, S., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes.Google Scholar
Muthén, L. K., & Muthén, B. O. (2010). Mplus 6. Los Angeles.Google Scholar
Pace, L., Salvan, A., Sartori, N. (2011). Adjusting composite likelihood ratio statistics. Statistica Sinica, 21, 129148.Google Scholar
Palomo, J., Dunson, D. B., Bollen, K., Lee, S.- Y. (2007). Handbook of computing and statistics with applications. Handbook of latent variable and related models, Amsterdam: Elsevier.Google Scholar
Poon, W.- Y., Lee, S.- Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika, 52, 409430.CrossRefGoogle Scholar
R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria.Google Scholar
Raftery, A., Bollen, K., Long, J. (1993). Bayesian model selection in structural equation models. Testing Structural Equation Models, Newbury Park, CA: Sage.Google Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48 (2), 136.CrossRefGoogle Scholar
Rosseel, Y., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V. & Merkle, E. (2012, September). Package lavaan.Google Scholar
Satorra, A., Heijmans, RDH, Pollock, DSG, Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. Innovations in multivariate statistical analysis, London: Kluwer Academic Publishers. 233247.CrossRefGoogle Scholar
Satorra, A., & Bentler, P. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. In Proceedings of the Business and Economic Statistics Section of the American Statistical Association (pp. 308–313).Google Scholar
Satorra, A., Bentler, P., von Eye, A., Clogg, C. (1994). Corrections to test statistics and standard errors in covariance structure analysis. Latent variable analysis: Applications to developmental research, Thousand Oaks, CA: Sage Publications. 399419.Google Scholar
Satorra, A., Bentler, P. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66 (4), 507514.CrossRefGoogle Scholar
Satorra, A., Bentler, P. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75 (2), 243248.CrossRefGoogle ScholarPubMed
Savalei, V., Kolenikov, S. (2008). Constrained vs. unconstrained estimation in structural equation modeling. Psychological Methods, 13, 150170.CrossRefGoogle Scholar
Savalei, V., Rhemtulla, M. (2013). The performance of robust test statistics with categorical data. British Journal of Mathematical and Statistical Psychology, 66 (2), 201223.CrossRefGoogle ScholarPubMed
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel. Longitudinal and structural equation models.Google Scholar
Varin, C. (2008). On composite marginal likelihoods. Advances in Statistical Analysis, 92, 128.CrossRefGoogle Scholar
Varin, C., Høst, G., Øivind, S. (2005). Pairwise likelihood inference in spatial generalized linear mixed models. Computational Statistics and Data Analysis, 49, 11731191.CrossRefGoogle Scholar
Varin, C., Reid, N., Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 141.Google Scholar
Varin, C., Vidoni, P. (2005). A note on composite likelihood inference and model selection. Biometrika, 92, 519528.CrossRefGoogle Scholar
Varin, C., Vidoni, P. (2006). Pairwise likelihood inference for ordinal categorical time series. Computational Statistics and Data Analysis, 51, 23652373.CrossRefGoogle Scholar
Vasdekis, V., Cagnone, S., Moustaki, I. (2012). A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika, 77, 425441.CrossRefGoogle ScholarPubMed
Wall, M., Amemiya, Y. (2000). Estimation of polynomial structural equation models. Journal of the American Statistical Association, 95, 929940.CrossRefGoogle Scholar
Xi, N. (2011). A composite likelihood approach for factor analyzing ordinal data. Unpublished doctoral dissertation. Columbus: The Ohio State University.Google Scholar
Zhao, Y., Joe, H. (2005). (2004). Composite likelihood estimation in multivariate data analysis. The Canadian Journal of Statistics, 33, 335356.CrossRefGoogle Scholar
Supplementary material: File

Katsikatsou and Moustaki supplementary material

Pairwise likelihood ratio tests and model selection criteria for structural equation models with ordinal variables
Download Katsikatsou and Moustaki supplementary material(File)
File 269.2 KB