Published online by Cambridge University Press: 02 January 2013
Many neutron stars (NSs) and runaway stars apparently come from the same regions on the sky. This suggests that they share the same birth places, namely associations and clusters of young massive stars. To identify NS birth places, we attempt to find NS-runaway pairs that could be former companions that were disrupted in a supernova (SN). The remains of recent (<few Myr) nearby (<150 pc) SNe should still be identifiable by observing the emission of rare radioisotopes such as 26Al and 60Fe that can also be used as additional indicators to confirm a possible SN event. We investigated the origin of the isolated NS RX J1605.3+3249 and found that it was probably born ≈ 100 pc far from Earth 0.45 Myr ago in the extended Corona Australis or Octans associations, or in Sco OB4 ≈ 1 kpc 3.5 Myr ago. A SN in Octans is supported by the identification of one to two possible former companions—the runaway stars HIP 68228 and HIP 89394—as well as the appearance of a feature in the γ-ray emission from 26Al decay at the predicted SN place. Both, the progenitor masses estimated by comparison with theoretical 26Al yields as well as derived from the lifetime of the progenitor star, are found to be ≈ 11M⊙.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.