Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T00:21:43.412Z Has data issue: false hasContentIssue false

On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach

Published online by Cambridge University Press:  02 January 2013

Ewan Cameron
Affiliation:
Department of Physics, Swiss Federal Institute of Technology (ETH Zurich), CH-8093 Zurich, Switzerland. Email: cameron@phys.ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present a critical review of techniques for estimating confidence intervals on binomial population proportions inferred from success counts in small to intermediate samples. Population proportions arise frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However, two of the most widely-used techniques for estimating binomial confidence intervals — the ‘normal approximation’ and the Clopper & Pearson approach — are liable to misrepresent the degree of statistical uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal aims: (I) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software packages (e.g. r, matlab, mathematica, idl, python); and (ii) to demonstrate convincingly the major flaws of both the ‘normal approximation’ and the Clopper & Pearson approach for error estimation.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Agresti, A. & Coull, B. A., 1998, The American Statistician, 52, 2, 119Google Scholar
Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nicol, R. C., Bamford, S. P. & Budavari, T., 2006, MNRAS, 373, 469CrossRefGoogle Scholar
Burgasser, A. J., Kirkpatrick, J. D., Reid, N. I., Brown, M. E., Miskey, C. L. & Gizis, J. E., 2003, ApJ, 586, 512Google Scholar
Brown, L. D., Cai, T. T. & DasGupta, A., 2001, Statistical Science, 16, 2101CrossRefGoogle Scholar
Brown, L. D., Cai, T. T. & DasGupta, A., 2002, The Annals of Statistics, 30, 1, 160Google Scholar
Cameron, E. et al. , 2010, MNRAS, 409, 1, 346Google Scholar
Clopper, C. J. & Pearson, E. S., 1934, Biometrika, 26, 404Google Scholar
Conselice, C. J., Rajgor, S. & Myers, R., 2008, 386, 909Google Scholar
Cousins, R. D., Hymes, K. E. & Tucker, T., 2009, NIM, 612, 2, 388Google Scholar
De Propris, R., Liske, J., Driver, S. P., Allen, P. D. & Cross, N. J. G., 2005, ApJ, 130, 1516CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G. & Bellin, A. D., 1990, ApJ, 364, 415CrossRefGoogle Scholar
Gehrels, N., 1986, ApJ, 303, 336Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B., 2003, Bayesian Data Analysis, (New York: Chapman & Hall)CrossRefGoogle Scholar
Hester, J. A., 2010, ApJ, 720, 191Google Scholar
Ilbert, O. et al. , 2010, ApJ, 709, 644CrossRefGoogle Scholar
Kraft, R. P., Burrows, D. N. & Nousek, J. A., 1991, ApJ, 374, 344CrossRefGoogle Scholar
Quirin, W. L., 1978, Probability and Statistics (New York: Harper & Row Publishers)Google Scholar
López-Sanjuan, C., Balcells, M., Pérez-González, P. G., Barro, G., Gallego, J. & Zamorano, J., 2010, A&A, 518, 20Google Scholar
Nair, P. B. & Abraham, R. G., 2010, ApJL, 714, 2, L260Google Scholar
Neyman, J., 1935, The Annals of Mathematical Statistics, 6, 111Google Scholar
Rao, M. M. & Swift, R. J., 2006, Mathematics and Its Applications, 582Google Scholar
Ross, T. D., 2003, Computers in Biology and Medicine, 33, 509Google Scholar
Santner, T. J., 1998, Teaching Statistics, 20, 2023Google Scholar
van den Bergh, S., 2002, AJ, 124, 782CrossRefGoogle Scholar
Vollset, S. E., 1993, Statistics in Medicine, 12, 809CrossRefGoogle Scholar
Wald, A. & Wolfowitz, J., 1939, The Annals of Mathematical Statistics, 10, 105Google Scholar