Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T23:05:54.380Z Has data issue: false hasContentIssue false

Analysis of the domain structure of membranes by fragmentation and separation in aqueous polymer two-phase systems

Published online by Cambridge University Press:  17 March 2009

Per-Åke Albertsson
Affiliation:
Department of Biochemistry, University of Lund, Box 124, S 221 00 Lund, Sweden.

Extract

This paper consists of three parts. The first describes theoretically a general strategy for fragmentation and separation of membranes which can be used in the elucidation of their structure and function. The second part describes a practical separation method, partition in liquid aqueous polymer two-phase systems, which can be used for separation of macromolecules and membrane particles of biological origin. The third part gives examples of the application of this method to membrane vesicles, and how this separation in combination with the strategy described in the first part can be used for analysis of the structure of biological membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkerlund, H.-E., Andersson, B. & Albertsson, P.-Å. (1976). Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. Biochim.biophys. Acta 449, 525535.CrossRefGoogle ScholarPubMed
Åkerlund, H.-E., Andersson, B., Persson, A. & Albertsson, P.-Å. (1979). Isoelectric points of spinach thylakoid membrane surfaces as determined by cross partition. Biochim. biophys. Acta 522, 238246.CrossRefGoogle Scholar
Albertsson, P.-Å. (1958). Particle fractionation in liquid two-phase systems. The composition of some phase systems and the behaviour of some model particles in them. Application to the isolation of cell walls from microorganisms. Biochim. biophys. Acta 27, 378395.CrossRefGoogle Scholar
Albertsson, P.-Å. (1958). Partition of proteins in liquid polymer-polymer two-phase systems. Nature 182, 709711.CrossRefGoogle ScholarPubMed
Albertsson, P.-Å. (1962). Partition methods for fractionation of cell particles and macromolecules. Meth. biochem. Anal. 10, 229262.CrossRefGoogle ScholarPubMed
Albertsson, P.-Å. (1985). Subfractionation of inside-out thylakoid vesicles and the localization of cytochrome. Physiol. Végétale 23, 731739.Google Scholar
Albertsson, P.-Å. (1986). Partition of Cell Particles and Macromolecules, 3rd ed.New York, Chichester, Brisbane: Wiley.Google Scholar
Albertsson, P.-Å., Sasakawa, S. & Walter, H. (1970). Cross partition and isoelectric points of proteins. Nature 228, 1329.CrossRefGoogle ScholarPubMed
Andersson, B. (1978). Separation of spinach chloroplast lamellae fragments by phase partition. Doctoral thesis, Lund University.Google Scholar
Andersson, B., Åkerlund, H.-E. & Albertsson, P.-Å. (1976). Separation of subchloroplast membrane particles by counter-current distribution. Biochim. biophys. Acta 423, 122132.CrossRefGoogle ScholarPubMed
Andersson, B., Åkerlund, H.-E. & Albertsson, P.-Å. (1977). Light induced reversible proton extrusion by spinach chloroplast photosystem II vesicles isolated by phase partition. FEBS Lett. 77, 141145.CrossRefGoogle ScholarPubMed
Andersson, B. & Anderson, J. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. biophys. Acta 593, 427440.CrossRefGoogle ScholarPubMed
Andersson, B., Simpson, D. J. & Hoyer-Hansen, G. (1978). Freeze-fracture evidence for the isolation of inside-out spinach thylakoid vesicles. Carlsberg Res. Comm. 43, 7789.CrossRefGoogle Scholar
Andersson, B., Sundby, C., Åkerlund, H.-E. & Albertsson, P.-Å. (1985). Inside-out thylakoid vesicles: an important tool for the characterization of the photosynthetic membrane. Physiol. Plant. 65, 322330.CrossRefGoogle Scholar
Andersson, B., Sundby, C. & Albertsson, P.-Å. (1980). A mechanism for the formation of inside-out membrane vesicles. Preparation of inside-out vesicles from membranepaired randomized chloroplast lamellae. Biochim. biophys. Acta 599, 391402.CrossRefGoogle ScholarPubMed
Barber, J. (1983). Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant Cell Environ. 6, 311322.Google Scholar
Blomquist, G. (1976). Cross partition and determination of net charge of the isoenzymes of enolase. Biochim. biophys. Acta 420, 8186.CrossRefGoogle ScholarPubMed
Ekberg, B., Sellergren, B. & Albertsson, P.-Å. (1985). Direct chiral resolution in an aqueous two-phase system using the counter-current distribution principle. J. Chromatogr. 333, 211214.CrossRefGoogle Scholar
Ericson, I. (1974). Determination of the isoelectric point of rat liver mitochondria by cross-partition. Biochim. biophys. Acta 356, 100107.CrossRefGoogle ScholarPubMed
Eriksson, E. (1981). Hydrophobic affinity partition of liposomes in aqueous two-phase systems. J. Chromatogr. 205, 189193.CrossRefGoogle Scholar
Eriksson, E. & Albertsson, P.-Å. (1978). The effect of lipid composition on thepartition of liposomes in aqueous two-phase systems. Biochim. biophys. Acta 507, 425432.CrossRefGoogle Scholar
Eriksson, E., Albertsson, P.-Å. & Johansson, G. (1976). Hydrofobic surface properties of erythrocytes studied by affinity partition in aqueous two-phase systems. Mol. cell. Biochem. 10, 123128.CrossRefGoogle Scholar
Flanagan, S. D., Barondes, S. H. & Taylor, P. (1976). Affinity partitioning of membranes. Cholinergic receptor-containing membranes from Torpedo californica. J. biol. chem. 251, 858865.CrossRefGoogle Scholar
Ghirardi, M. L. & Melis, A. (1983). Localization of photosynthetic electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays. Arch. Biochem. Biophys 224, 1928.CrossRefGoogle ScholarPubMed
Gierow, P., Sommarin, M., Larsson, C. & Jergil, B. (1986). Fractionation of rat liver plasma-membrane regions by two-phase partitioning. Biochem. J. 235, 685691.CrossRefGoogle ScholarPubMed
Goodchild, D. J., Andersson, B. & Anderson, J. M. (1985). Immunocytochemical localization of polypeptides associated with the oxygen evolving system of photosynthesis. Eur. J. cell Biol. 36, 294298.Google Scholar
Gräber, P., Zickler, A. & Åkerlund, H.-E. (1978). Electric evidence for the isolation of inside-out vesicles from spinach chloroplasts. FEBS Lett. 96, 233237.CrossRefGoogle Scholar
Johansson, G. (1970). Partition of salts and their effects on partition of proteins in a dextran-poly(ethylene glycol). 1. Partition of albumins. Biochim. Biophys. Acta 221, 378390.CrossRefGoogle Scholar
Johansson, G. (1974a). Effects of salts on the partition of proteins in aqueous polymeric two-phase systems. Acta Chem. Scand. B 28, 873882.CrossRefGoogle Scholar
Johansson, G. (1974a). Partition of proteins and micro-organisms in aqueous biphasic systems. Mol. cell. Biochem. 4, 169180.CrossRefGoogle ScholarPubMed
Johansson, G., Gysing, R. & Flanagan, S. D. (1981). Affinity partitioning of membranes. Evidence for discrete membrane domains containing cholinergic receptor. J. biol. Chem. 256, 91269135.CrossRefGoogle ScholarPubMed
Johansson, G. & Hartman, A. (1974). Partition of proteins in aqueous biophasic systems. Proc. International Solvent Extraction Conference, Lyon, Soc. Chem. Industries, vol. 1, pp. 927942.Google Scholar
Johansson, G., Hartman, A. & Albertsson, P.-Å. (1973). Partition of proteins in two-phase systems containing charged poly(ethylene glycol). Eur. J. Biochem. 33, 379386.CrossRefGoogle ScholarPubMed
Johansson, G., Kopperschlager, G. & Albertsson, P.-Å. (1983). Affinity partitioning of phosphofructokinase from baker's yeast using polymer-bound Cibacron blue F3G-A. Eur. J. Biochem. 131, 589594.CrossRefGoogle ScholarPubMed
Lif, T., Frick, G. & Albertsson, P.-Å. (1961). Fractionation of nucleic acids in aqueous polymer two-phase systems. J. mol. Biol. 3, 727740.CrossRefGoogle Scholar
Melis, A., Svensson, P. & Albertsson, P.-Å. (1986). The domain organization of the chloroplast thylakoid membrane. Localization of Photosystem I and of the cytochrome b6-f complex. Biochim. biophys. Acta 850, 402412.CrossRefGoogle Scholar
Müller, W., Schuetz, H. J., Guerrier-Takacta, C., Cole, P. E. & Potts, R. (1979). Size fractionation of DNA fragments by liquid-liquid chromatography. Nucl. Acid Res. 7, 24832500.CrossRefGoogle ScholarPubMed
Olde, B. & Johansson, G. (1985). Affinity partitioning and centrifugal counter-current distribution of membrane-bound opiate receptors using naloxone-poly(ethylene glycol). Neuroscience 15, 12471253.CrossRefGoogle ScholarPubMed
Rydén, J. & Albertsson, P.-Å. (1971). Interfacial tension of dextran-polyethylene glycol–water two-phase systems. J. Colloid Interface Sci. 37, 219222.CrossRefGoogle Scholar
Shanbhag, V. P. & Axelsson, C. G.. (1975). Hydrofobic interaction determined by partition in aqueous two-phase systems. Partition of proteins in systems containing fatty acid esters of poly(ethylene glycol). Eur. J. Biochem. 60, 1722.CrossRefGoogle Scholar
Shanbhag, V. P. & Johansson, G. (1974). Specific extraction of human serum albumin by partition in aqueous biphasic systems containing poly(ethylene glycol)-bound ligand. Biochem. biophys. Res. Comm. 61, 11411146.CrossRefGoogle ScholarPubMed
Staehelin, L. A. & Arntzen, C. J. (1983). Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J. Cell Biol. 97, 13271337.CrossRefGoogle ScholarPubMed
Sundby, C., Andersson, B. & Albertsson, P.-Å. (1982). Conversion of everted thylakoids into vesicles of normal sidedness exposing the outer grana partition membrane surface. Biochim. biophys. Acta 688, 709717.CrossRefGoogle Scholar
Tiselius, A.. (1954). Some applications of the separation of large molecules and colloidal particles. J. chem. Soc. 26502657.CrossRefGoogle Scholar
Tjerneld, F., Berner, S., Cajarville, A. & Johansson, G. (1981). New aqueous two-phase system based on hydroxypropyl starch useful in enzyme purification. Enzyme Microb. Technol. 8, 417424.CrossRefGoogle Scholar
Vallon, O., Olivie, J. & Wollman, F. A. (1986). Lateral distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas reinhardtii and in spinach: an immunocytochemical study using intact thylakoid membranes and a PSII enriched membrane preparation. Photobiochem. Photobiophys 12, 203220.Google Scholar
Van Alstine, J. M., Boyce, J., Harris, M., Bamberger, S., Curreri, P. A., Snyder, R. S. & Brooks, D. E. (1986). Proceedings of an NSF Workshop on Interfacial Phenomena.Space Science Laboratory preprint series No. 86–139 (NASA).Google Scholar
Walter, H. & Sasakawa, S. (1971). Partition of closely related proteins in aqueous two-polymer phase systems. Human hemoglobin variants and hemoglobins from different species. Biochemistry 10, 108.CrossRefGoogle ScholarPubMed
Walter, H., Sasakawa, S. & Albertsson, P.-Å. (1972). Cross partition of proteins. Effect of ionic composition and concentration. Biochemistry 11, 3880CrossRefGoogle ScholarPubMed
Westrin, H., Albertsson, P.-Å. & Johansson, G. (1976). Hydrophobic affinity partition of spinach chloroplasts in aqueous two-phase systems. Biochim. biophys. Acta 436, 696706.CrossRefGoogle ScholarPubMed
Westrin, H., Shanbhag, V. P. & Albertsson, P.-Å. (1983). Isoelectric points of membrane surfaces of three spinach chloroplast classes determined by cross-partition. Biochim. biophys. Acta 732, 8391.CrossRefGoogle Scholar