Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T15:42:26.510Z Has data issue: false hasContentIssue false

The coupling between energy-yielding and energy-utilizing reactions in mitochondria

Published online by Cambridge University Press:  17 March 2009

E. C. Slater
Affiliation:
Laboratory of Biochemistry, B.C.P. Jansen Institute, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albracht, S. P. J. & Slater, E. C. (1970). Molybdenum associated with NADH dehydrogenase in Complex I. Biochim. biophys. Acta 223, 457459.CrossRefGoogle ScholarPubMed
Arnon, D. I., Tsujimoto, H. Y. & McSwain, B. D. (1965). Photosynthetic phosphorylation and electron transport. Nature, Lond. 207, 13671372.CrossRefGoogle ScholarPubMed
Azzi, A., Chance, B., Radda, G. K. & Lee, C. P. (1969). A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc. natn. Acad. Sci. U.S.A. 62, 612619.CrossRefGoogle ScholarPubMed
Azzone, G. F., Colonna, R., Dell'Antone, P. & Massari, S. (1971). Quantitative parameters of the conversion of chemical and osmotic energies. The nucleophilic activation reaction during energization. In Energy Transduction in Respiration and Photosynthesis, ed. Slater, E. C., Papa, S., Rossi, C. S. and Quagliariello, E.. Bari: Adriatica Editrice. (In the Press.)Google Scholar
Bendall, D. S. (1968). Oxidation-reduction potentials of cytochromes in chloroplasts from higher plants. Biochem. J. 109, 4647P.CrossRefGoogle ScholarPubMed
Berden, J. A. (1971). Fluorimetric studies on the binding of antimycin to the respiratory chain. In Energy Transduction in Respiration and Photosynthesis, ed. Slater, E. C.Papa, S.Rossi, C. S., and Quagliariello, E.. Bari: Adriatica Editrice. (In the Press.)Google Scholar
Berden, J. A. & Slater, E. C. (1970). The reaction of antimycin with a cytochrome b preparation active in reconstitution of the respiratory chain. Biochim. biophys. Acta 216, 237249.CrossRefGoogle ScholarPubMed
Bonner, W. D. Jr. & Slater, E. C. (1970). Effect of antimycin on the potato mitochondrial cytochrome b system. Biochim. biophys. Acta 223, 349353.CrossRefGoogle ScholarPubMed
Boyer, P. D. (1965). Carboxyl activation as a possible common reaction in substrate-level and oxidative phosphorylation and in muscle contraction. In Oxidases and Related Redox Systems, vol. 2, pp. 9941008. Ed. King, T. E.Mason, H. S. and Morrison, M.. New York: John Wiley.Google Scholar
Brocklehurst, J. R., Freedman, R. B., Hancock, D. J. & Radda, G. K. (1970). Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem. J. 116, 721731.CrossRefGoogle ScholarPubMed
Bryła, J., Kaniuga, Z. & Slater, E. C. (1969). Studies on the mechanism of inhibition of the mitochondrial electron transport by antimycin. II. Antimycin as an allosteric inhibitor. Biochim. biophys. Acta 189, 317326.CrossRefGoogle Scholar
Chance, B. (1965). The energy-linked reaction of calcium with mitochondria. J. Biol. Chem. 240, 27292748.CrossRefGoogle ScholarPubMed
Chance, B., Azzi, A., Lee, I. Y., Lee, C. P. & Mela, L. (1969). The nature of the respiratory chain: location of energy conservation sites, the high energy store, electron transfer-linked conformation changes, and the ‘closedness’ of submitochondrial vesicles. In Mitochondria – Structure and Function, vol. 17, pp. 233273. Ed. Ernster, L. and Drahota, Z.. London and New York: Academic Press.Google Scholar
Chance, B., Lee, C. P. & Schoener, B. (1966). High and low energy states of cytochromes. II. In submitochondrial particles. J. biol. Chem. 241, 45744576.CrossRefGoogle Scholar
Chance, B., Radda, G. & Lee, C. P. (1970 a). The environment of the energized state of membranes: state-charge mechanism of energy conservation. In Electron Transport and Energy Conservation, pp. 551561. Ed. Tager, J. M.Papa, S.Quagliariello, E. and Slater, E. C.. Bari: Adriatica Editrice.Google Scholar
Chance, B. & Schoener, B. (1966). High and low energy states of cytochromes. I. In mitochondria, J. biol. Chem. 241, 45674573.CrossRefGoogle ScholarPubMed
Chance, B. & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65134.Google ScholarPubMed
Chance, B., Wilson, D. F., Dutton, P. L. & Erecińska, M. (1970 b). Energy-coupling mechanisms in mitochondria: Kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b. Proc. natn. Acad. Sci. U.S.A. 66, 11751182.CrossRefGoogle ScholarPubMed
Chappell, J. B. & Crofts, A. R. (1966). Ion transport and reversible volume changes of isolated mitochondria. In Regulation of Metabolic Processes in Mitochondria, BBA Library, vol. 7, pp. 293314. Ed. Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C.. Amsterdam: Elsevier.Google Scholar
Cockrell, R. S., Harris, E. J. & Pressman, B. C. (1966). Energetics of potassium transport in mitochondria induced by valinomycin. Biochemistry N. Y. 5, 23262335.CrossRefGoogle ScholarPubMed
Dam, K. van & Kraayenhof, R. (1969). The mechanism of uncoupling by lipid-soluble weak acids. In The Energy Level and Metabolic Control in Mitochondria, pp. 299308. Ed. Papa, S., Tager, J. M., Quagliariello, E. and Slater, E. C.. Bari: Adriatica Editrice.Google Scholar
Dam, K. Van & Meyer, A. J. (1971). Oxidation and energy conservation by mitochondria. A. Rev. Biochem. (in the Press).CrossRefGoogle Scholar
Dam, K. van & Slater, E. C. (1967). A suggested mechanism of uncoupling of respiratory-chain phosphorylation. Proc. natn. Acad. Sci. US.A. 58, 20152019.Google ScholarPubMed
DeVault, D. (1971). Energy transduction in electron transport. Biochim. biophys. Acta 226, 193199.CrossRefGoogle ScholarPubMed
Eilermann, L. J. M. & Slater, E. C. (1970). The phosphate potential generated by membrane fragments of Azotobacter vinelandii. Biochim. biophys. Acta 216, 226228.Google Scholar
Ernster, L. (1963). The phosphorylation occurring in the flavoprotein region of the respiratory chain. In Intracelluler Respiration: Phosphorylating and Non-Phosphorylating Oxidation Reactions, vol. 5, pp. 115145. Ed. Slater, E. C.. London: Pergamon Press.Google Scholar
Fan, H. N. & Cramer, W. A. (1970). The redox potential of cytochrome b 559 and b 563 in spinach chloroplasts. Biochim. biophys. Acta 216, 200207.CrossRefGoogle Scholar
Finkelstein, A. (1970). Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes. Biochim. biophys. Acta 205, 16.CrossRefGoogle ScholarPubMed
Fonyó, A. & Bessman, S. P. (1968). Inhibition of inorganic phosphate penetration into liver mitochondria by p-mercuribenzoate. Biochim. Med. 2, 145163.CrossRefGoogle Scholar
Garland, P. B. (1970). Biochemical applications of continuous culture: Energy-conservation mechanisms in Torulopsis utilis. Biochem. J. 118, 329339.CrossRefGoogle ScholarPubMed
Garrahan, P. J. & Glynn, I. M. (1966). Driving the sodium pump backwards to form adenosine triphosphate. Lond. 211, 14141415.CrossRefGoogle ScholarPubMed
Gelder, B. F. van & Muijsers, A. O. (1964). The ratio of cytochrome a to cytochrome a 3 in cytochrome c oxidase. Biochim. biophys. Acta 81, 405407.Google Scholar
Gillis, J. M. & Maréchal, G. (1969). Resynthesis of ATP in glycerinated fibres stretched during contraction. Abstracts, Third Int. Biophys. Congr. p. 271.Google Scholar
Green, D. E., Asai, J., Harris, R. A. & Penniston, J. T. (1968). Conformational basis of energy transformations in membrane systems. III. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Archs Biochem. Biophys. 125, 684705.CrossRefGoogle Scholar
Grinius, L. L., Jasaitis, A. A., Kadziauskas, Y. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M. & Valdimirova, M. A. (1970). Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim. biophys. Acta 216, 112.CrossRefGoogle Scholar
Groot, G. S. P., Kováč, L. & Schatz, G. (1970). Promitochondria of anaerobically grown yeast. V. Energy transfer in the absence of an electron transfer chain. Proc. natn. Acad. Sci. U.S.A. (in the Press).Google Scholar
Hackenbrock, C. R. (1966). Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell. Biol. 30, 269297.CrossRefGoogle Scholar
Harris, E. J. & Pressman, B. C. (1969). The direction of polarity of the mitochondrial transmembrane potential. Biochim. biophys. Acta 172, 6670.CrossRefGoogle Scholar
Hatefi, Y. (1968). Flavoproteins of the electron transport system and the site of action of Amytal, rotenone, and piericidin A. Proc. natn. Acad. Sci. U.S.A. 60, 733740.CrossRefGoogle ScholarPubMed
Heldt, H. W., Jacobs, H. & Klingenberg, M. (1965). Endogenous ADP of mitochondria, an early phosphate acceptor of oxidative phosphorylation as disclosed by kinetic studies with C14 labelled ADP and ATP and with atractyloside. Biochem. biophys. Res. Commun. 18, 174179.CrossRefGoogle ScholarPubMed
Hemker, H. C. (1962). Lipid solubility as a factor influencing the activity of uncoupling phenols. Biochim. biophys. Acta 63, 4654.CrossRefGoogle ScholarPubMed
Hill, R. & Bendall, D. S. (1967). Oxidation-reduction potentials in relation to components of the chloroplast. In Biochemistry of Chloroplasts, vol. 2, pp. 559564. Ed. Goodwin, T. W.. London and New York: Academic Press.Google Scholar
Hind, G. & Nakatani, H. Y. (1970). Determination of the concentration and the redox potential of chloroplast cytochrome 559. Biochim. biophys. Acta 216, 223225.CrossRefGoogle ScholarPubMed
Hinkle, P. & Mitchell, P. (1970). Effect of membrane potential on equilibrium poise between cytochrome a and cytochrome c in rat-liver mitochondria. Bioenergetics 1, 4560.CrossRefGoogle ScholarPubMed
Holton, F. A. & Colpa-Boonstra, J. P. (1960). Spectrophotometric observations relating to the oxidation-reduction potentials of cytochrome b in non-phosphorylating heart-muscle particles. Biochem. J. 76, 179189.CrossRefGoogle Scholar
Hopfer, U., Lehninger, A. L. & Thompson, T. E. (1968). Protonic conductance across phospholipid bilayer membranes, induced by uncoupling agents for oxidative phosphorylation. Proc. natn. Acad. Sci. U.S.A. 59, 484490.CrossRefGoogle ScholarPubMed
Ikegami, I., Katoh, S. & Takamiya, A. (1968). Nature of heme moiety and oxidation-reduction potential of cytochrome 558 in Euglena chloroplasts. Biochim. biophys. Acta 162, 604606.CrossRefGoogle ScholarPubMed
Isaev, P. I., Liberman, E. A., Samuilov, V. D., Skulachev, V. P. & Tsofina, L. M. (1970). Conversion of biomembrane-produced energy into electric form. III. Chromatophores of Rhodospirillum rubrum. Biochim. biophys. Acta 216, 2229.Google Scholar
Jagendorf, A. T. & Uribe, E. (1966). ATP formation caused by acid-base transition of spinach chloroplasts. Proc. natn. Acad. Sci. U.S.A. 55, 170177.CrossRefGoogle ScholarPubMed
Keilin, D. & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proc. R. Soc. B 127, 167191.Google Scholar
Kemp, A. Jr. & Slater, E. C. (1964). The site of action of atractyloside. Biochim. biophys. Acta 92, 178180.Google ScholarPubMed
King, T. E., Kuboyama, M. & Takemori, S. (1965). On cardiac cytochrome oxidase: a cytochrome c-cytochrome oxidase complex. In Oxidases and Related Redox Systems, vol. 2, pp. 707736. Ed. King, T. E., Mason, H. S., and Morrison, M.. New York: John Wiley.Google Scholar
Kraayenhof, R. (1969). ‘State 3–State 4 transition’ and phosphate potential in ‘Class I’ spinach chloroplasts. Biochim. biophys. Acta 180, 213215.CrossRefGoogle Scholar
Kraayenhof, R. & Dam, K. van (1969). Interaction between uncouplers and substrates in rat-liver mitochondria. Biochim. biophys. Acta 172, 189197.CrossRefGoogle ScholarPubMed
Lance, C. & Bonner, W. D. Jr. (1968). The respiratory chain components of higher plant mitochondria. Pl. Physiology, Lancaster 43, 756766.CrossRefGoogle ScholarPubMed
Lee, C. P. (1970). Orientation of the respiratory chain in the mitochondrial inner membrane. In Electron Transport and Energy Conservation, pp. 291300, Ed. Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C.. Bari: Adriatica Editrice.Google Scholar
Lehninger, A. L., Carafoli, E. & Rossi, C. S. (1967). Energy-linked ion movements in mitochondrial systems. Adv. Ensymol. 29, 259320.Google ScholarPubMed
Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A. & Skulachev, V. P. (1969). Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature Lond. 222, 10761078.CrossRefGoogle ScholarPubMed
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Lond. 191, 144148.CrossRefGoogle ScholarPubMed
Mitchell, P. (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodmin: Glynn Research Ltd.CrossRefGoogle ScholarPubMed
Mitchell, P. (1968). Chemiosmotic Coupling and Energy Transduction. Bodmin.: Glynn Research Ltd.Google Scholar
Mitchell, P. & Moyle, J. (1965). Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase system of rat-liver mitochondria. Lond. 208, 147151.CrossRefGoogle ScholarPubMed
Mitchell, P. & Moyle, J. (1969). Estimation of membrane potential and pH difference across the cristae membrane of rat-liver mitochondria. Eur. J. Biochem. 7, 471484.CrossRefGoogle ScholarPubMed
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Muraoka, S. & Slater, E. C. (1969). The redox states of respiratory-chain components in rat-liver mitochondria. I. Effect of varying substrate concentration and of azide. Biochim. biophys. Acta 180, 221226.CrossRefGoogle ScholarPubMed
Philips, R. C., George, P. & Rutman, R. J. (1969). Thermodynamic data for the hydrolysis of adenosine triphosphate, as a function of pH, Mg2+ ion concentration, and ionic strength. J. Biol. Chem. 244, 33303342.CrossRefGoogle Scholar
Racker, E., Burstein, C., Loyter, A. & Christiansen, R. O. (1970). The sidedness of the inner mitochondrial membrane. In Electron Transport and Energy Conservation, pp. 235252. Ed. Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C., Bari: Adriatica Editrice.Google Scholar
Rieske, J. S., Lipton, S. H., Baum, H. & Silman, H. I. (1967). Factors affecting the binding of antimycin A to Complex III of the mitochondrial respiratory chain. J. biol. Chem. 242, 48884896.CrossRefGoogle Scholar
Simon, W., Pioda, L. A. R. & Wipf, H. K. (1969). Cation specificity of inhibitors. In Inhibitors – Tools in Cell Research, pp. 356364. Ed. Bücher, Th. and Sies, H.. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Slater, E. C. (1953). Mechanism of phosphorylation in the respiratory chain. Lond. 172, 975982.CrossRefGoogle ScholarPubMed
Slater, E. C. (1967). An evaluation of the Mitchell hypothesis of chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Eur. J. Biochem. 1, 317326.CrossRefGoogle ScholarPubMed
Slater, E. C. (1970). The magnitude of the energy pressure in energized mitochondria, protoplasts and chloroplasts. In Electron Transport and Energy Conservation, pp. 363369. Ed. Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C.. Bari: Adriatica Editrice.Google Scholar
Slater, E. C. & Berden, J. A. (1971). High-energy forms of cytochrome b. Wenner-Gren Symp. on ‘Structure and Function of Oxidation Reduction Enzymes’, Stockholm. (In the Press.)Google Scholar
Slater, E. C., Berden, J. A., Bertina, R. M. & Albracht, S. P. J. (1971). Antimycin and oligomycin as probes of the energy state of mitochondrial membranes. In Energy Transduction in Respiration and Photosynthesis, ed. Slater, E. C., Papa, S., Rossi, C. S. and Quagliariello, E.. Bari: Adriatica Editrice. (In the Press.)Google Scholar
Slater, E. C., Gelder, B. F. vam & Minnaert, K. (1965). Cytochrome c oxidase. In Oxidases and Related Redox Systems, vol. 2, pp. 667706. Ed. King, T. E., Mason, H. S. and Morrison, M.. New York: John Wiley.Google Scholar
Slater, E. C., Lee, C. P., Berden, J. A., & Wegdam, H. J. (1970 a). High-energy forms of cytochrome b. Nature Lond. 226, 12481249.CrossRefGoogle ScholarPubMed
Slater, E. C., Lee, C. P., Berden, J. A. & Wegdam, H. J. (1970 b). High-energy forms of cytochrome b. I. The effect of ATP and antimycin on cytochrome b in phosphorylating submitochondrial particles. Biochim. biophys. Acta 223, 354364.CrossRefGoogle Scholar
Storey, B. T. (1970). A chemical hypothesis for energy conservation in the mitochondrial respiratory chain. J. theor. Biol. 28, 233259.CrossRefGoogle ScholarPubMed
Stryer, L. (1965). The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J. molec. Biol. 13, 482495.CrossRefGoogle ScholarPubMed
Tager, J. M., Veldsema-Currie, R. D. & Slater, E. C. (1966). The chemiosmotic theory of oxidative phosphorylation. Lond. 212, 376379.CrossRefGoogle ScholarPubMed
Tupper, J. T. & Tedeschi, H. (1969 a). Microelectrode studies on the membrane properties of isolated mitochondria. Proc. natn. Acad. Sci. U.S.A. 63, 370377.CrossRefGoogle ScholarPubMed
Tupper, J. T. & Tedeschi, H. (1969 b). Microelectrode studies on the membrane properties of isolated mitochondria. II. Absence of a metabolic dependence. Proc. natn. Acad. Sci. U.S.A. 63, 713717.CrossRefGoogle ScholarPubMed
Tupper, J. T. & Tedeschi, H. (1969 c). Mitochondrial membrane potentials measured with microelectrodes: Probable ionic basis. Science N. Y. 166, 15391540.CrossRefGoogle ScholarPubMed
Turner, D. G. & Brand, L. (1968). Quantitative estimation of protein binding site polarity. Fluorescence of n-arylaminonaphthalene sulfonate. Biochemistry N. Y. 7, 33813390.CrossRefGoogle Scholar
Tyler, D. D. (1968). The inhibition of phosphate entry into rat liver mitochondria by organic mercurials and by formaldehyde. Biochem. J. 107, 121123.CrossRefGoogle ScholarPubMed
Veldsema-Currie, R. D. & Slater, E. C. (1968). Inhibition by anions of dinitrophenol-induced ATPase of mitochondria. Biochim. biophys. Acta 162, 310319.CrossRefGoogle Scholar
Veldsema-Currie, R. D. & Slater, E. C. (1970). The kinetics of changes in the redox state of ubiquinone on the transition from State 4 to State 3 in rat-liver mitochondria. Biochim. biophys. Acta 197, 113116.CrossRefGoogle Scholar
Wang, J. H. (1970). Oxidative and photosynthetic phosphorylation mechanisms. The chemistry reflects a possible evolutionary pattern for the driving force of life. Science N. Y. 167, 2530.CrossRefGoogle Scholar
Weber, G. & Laurence, D. J. R. (1954). Fluorescent indicators of adsorption in aqueous solution and on the solid phase. Biochem. J. 56, xxxi.Google ScholarPubMed
Wegdam, H. J., Berden, J. A. & Slater, E. C. (1970). High-energy forms of cytochrome b. II. The effect of ATP and antimycin on cytochrome b in intact mitochondria. Biochim. biophys. Acta 223, 365373.CrossRefGoogle ScholarPubMed
Wikström, M. K. F. (1971). Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria. Biochim. biophys. Acta (in the Press).CrossRefGoogle Scholar
Wilson, D. F. & Dutton, P. L. (1970 a). The oxidation-reduction potentials of cytochromes a and a 3 in intact rat liver mitochondria. Archs Biochem. Biophys. 136, 583585.CrossRefGoogle ScholarPubMed
Wilson, D. F. & Dutton, P. L. (1970 b). Energy dependent changes in the oxidation-reduction potential of cytochrome b. Biochem. biophys. Res. Commun. 39, 5964.CrossRefGoogle ScholarPubMed
Wilson, D. F., Dutton, P. L. & Chance, B. (1971). A thermodynamic evaluation of mitochondrial energy transduction. In Energy Transduction in Respiration and Photosynthesis. Ed. Slater, E. C., Papa, S., Rossi, C. S. and Quagliariello, E.. Bari: Adriatica Editrice. (In the Press.)Google Scholar